跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭康泰
研究生(外文):Kang-Tai Peng
論文名稱:以有機金屬化學沈積技術及燒結製程製備奈米矽化鉬/氮化矽複合陶瓷之研究
論文名稱(外文):Investigation of Mo5Si3/Si3N4 nanocomposites via Metal Organic Chemical Vapor Deposition and Densification Process
指導教授:黃肇瑞黃肇瑞引用關係
指導教授(外文):Jow-Lay Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:111
中文關鍵詞:有機金屬化學氣相沈積技術矽化鉬氮化矽奈米複合材料
外文關鍵詞:Mo5Si3Si3N4MOCVDmicrostructurenanocomposite
相關次數:
  • 被引用被引用:2
  • 點閱點閱:531
  • 評分評分:
  • 下載下載:125
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用有機金屬化學沈積法(MOCVD)與流體床(Fluidized Bed )技術,經過球磨及還原熱處理可製備出高度分散、矽化鉬顆粒(Mo5Si3)/氮化矽(Si3N4)基奈米級複合粉體。複合材料之燒結和緻密化在氮化矽(Si3N4)燒結研究的基礎上延伸,選擇助燒結劑(Yb2O3, Al2O3),並研究熱壓燒結過程的反應和對微結構之影響,以製備出相當緻密且第二相均勻分布的奈米級複合材料。

實驗結果顯示利用有機金屬化學沈積法(MOCVD)與流體床(Fluidized Bed )技術,在沈積溫度為300℃,載流氣體為氮氣之氣氛下,搭配後續球磨分散處理,可成功使沈積相均勻分散於氮化矽顆粒上。經由微結構觀察,沈積相型態可分為顆粒狀及島狀型態之披覆。其尺寸皆小於100nm。經由成分分析判定沈積相為非晶質之鉬及氧化鉬。

氧化鉬/氮化矽複合粉體經過氫氣/氮氣混和氣氛下,於1300℃進行熱處理。結果顯示,氧化鉬會於1100℃還原成金屬鉬,並於1300℃形成三矽化五鉬。經由熱力學計算可知,溫度及氮氣壓力將影響矽化鉬之計量比,在1atm氮氣壓力下,在燒結溫度1800℃時可生成二矽化鉬;在10atm氮氣壓力下,在燒結溫度1850℃時,則無法生成二矽化鉬。

1300℃還原之複合粉體經1850℃,持溫一小時熱壓燒結後,可製備出緻密性良好之矽化鉬/氮化矽複合材料。矽化鉬晶粒所呈現的相為Mo5Si3。微結構觀察矽化鉬可分為次微米形態及奈米形態,次微米矽化鉬分佈於氮化矽晶界上;奈米矽化鉬則分佈於氮化矽晶界及晶粒上。當矽化鉬含量為5wt﹪時,氮化矽晶粒明顯的被抑制成長,而當矽化鉬含量為7wt﹪時則因次微米矽化鉬大量產生而導致抑制效果不明顯。矽化鉬/氮化矽複合陶瓷之機械性質,彎曲強度在矽化鉬含量為5wt﹪時可達912 MPa、硬度與氮化矽比較則並無明顯差異,破壞韌性則隨著矽化鉬含量增加而些微提升,當矽化鉬含量為7 wt﹪可達7.1MPa*m1/2。
The metal-organic chemical vapor deposition (MOCVD) conducted in fluidized bed has been employed for the preparation of nano-sized molybdenum silicide and silicon nitride composites. Molybdenum octooxyhydride was decomposed and molybdenum oxide was deposited onto silicon nitride partical surface in the MOCVD process. The MoOx/Si3N4 composite powder was then reduced in H2/N2 and subsequently hot-pressed to be bulk Mo5Si3 composites.

XRD, SEM or TEM characterized a series of MoOx/Si3N4 composite powder in order to investigate the crystalline phase and microstructure. The results indicated that the deposition phase was amorphous MoOx and individual deposition and island like deposition were two responsible mechanisms. The Molybdenum oxide phase transformation during reducing process. Heat treatment of composite powder at 1100℃ in H2/N2 produced metallic Mo, and transformed to Mo5Si3/Si3N4 at 1300℃ within 1h.

Mo5Si3/Si3N4 composite powders can be sintered by hot pressing at 1850℃ for 1h in 10 atm N2 atmosphere and density of the composites reached to 98.5﹪of theoretical density. The flexural strength, hardness, fracture toughness and microstructure of the dense Mo5Si3/Si3N4 composites were investigated and the results are discussed. Two type Mo5Si3 grain size are proposed.

Specimen was tested by 4-point bending method. The strength was 912 MPa. The hardness of the composites was close to that of Si3N4. The fracture toughness increases with the increase of Mo5Si3 content.
總目錄
論文摘要 I
Abstract III
總目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究目的及重點 3
第二章 理論基礎 6
2-1 氮化矽 6
2-1-1 簡介 6
2-1-2 氮化矽的燒結機構 7
2-2 陶瓷基複合材料 15
2-2-1 陶瓷基複合材料韌化方式 15
2-2-2 奈米複合材料 16
2-3化學氣相沈積法及流體床技術 20
2-3-1 CVD製程 21
2-3-2 MOCVD製程中六羰鉬使用之探討 24
2-4 矽化鉬 24
2-4-1矽化鉬簡介 24
2-4-2 矽化鉬/氮化矽複合材料之特性 25
2-4-3 鉬-矽-氮相圖 27
第三章 材料與實驗方法 30
3-1 實驗設計 30
3-2 實驗設備及合成複合粉體之製程 30
3-2-1 MOCVD與流體床之實驗設計 30
3-2-2 實驗材料 32
3-2-3 合成複合粉體之製程 35
3-3 複合材料之燒結製程 36
3-4複合粉體之性質分析 40
3-4-1複合粉體之相分析 40
3-4-2 複合粉體之表面型態之觀察 40
3-4-3 複合粉體之ESCA成分分析 41
3-5 燒結體的性質測定 41
3-5-1密度的測定 41
3-5-2 X光繞射分析 42
3-5-3 掃瞄式電子顯微鏡(SEM)試樣之製作及觀察 42
3-5-4穿透式電子顯微鏡(TEM)試樣之製作及觀察 43
3-6 機械性質之量測 44
3-6-1彎曲強度的測定 44
3-6-2表面微硬度測試 45
3-6-3破壞韌性 45
第四章 結果與討論 47
4-1複合粉體的特性 47
4-1-1分散的均勻性 47
4-1-2成分分析及微結構 49
Deposited time(mins) 58
4-2沈積相還原反應及與基材反應之研究 64
4-3矽化鉬/氮化矽燒結體之特性 72
4-3-1 密度 72
4-3-2相 74
4-3-3微結構觀察 74
4-3-4 三矽化五鉬/氮化矽界面性質之探討 90
4-4 燒結體的機械行為 94
4-4-1 彎曲強度 94
4-4-2 硬度 96
4-4-3 破壞韌性 96
第五章 結論 100
參考文獻 102
致謝 110
作者簡歷 111

圖目錄
Fig.2.1 Atomic arrangement of (a) A/B layers and (b) C/D layer[17]. 8
Fig.2.2 Microstructural development during Liquid phase consolidation of various type of Si3N4 powder[35]. 10
Fig.2.3 Schematic diagram illustration the morphological development of β-Si3N4 grains during consolidation[35]. 11
Fig.2.4 The sintering model of α-Si3N4 presented by Weiss[30]. 14
Fig.2.5 The classification of ceramic nanocomposites[6,7]. 18
Fig.2.6 The five consecutive processes of metal-organic chemical vapor deposition[43]. 22
Fig.2.7 The Mo-Si-N ternary isothermal section at 1400℃[51]. 28
Fig.3.1 The flowchart of experiment. 31
Fig.3.2 Schematic diagram of MOCVD and Fluidized bed reactor. 33
Fig.3.3 Schematic diagram of hydrogen reducing furnace. 37
Fig.3.4. The temperature and pressure profiles for hot-pressing silicon nitride. 39
Fig.4.1 (a) SEM photograph showing MoOx-deposited silicon nitride powders prepared by MOCVD at 300℃for 60 mins in N2. 48
(b) The corresponding X-ray mapping of Mo element in (a). 48
Fig.4.2 (a)SEM photograph showing MoOx-deposited silicon nitride powders prepared by MOCVD at 300℃for 60 mims in N2, and ball milled for 24 hr. 50
(b) The corresponding X-ray mapping of Mo element in (a). 50
Fig.4.3 X-ray diffraction patterns for (a)α-Si3N4 , (b) MoOx-deposited Si3N4 (60 mins), (C)MoOx deposited Si3N4 (90 mins). 51
Fig. 4.4 EDS spectrum of MoOx deposited silicon nitride composite. (300℃, 90 mins.) 52
Fig.4.5 TEM image of MoOx deposited silicon nitride powders. (300℃, 90 mins.), (a) bright-field image (b) EDS analysis of A in (a), (c) diffraction pattern of A in (a). 53
Fig.4.6 ESCA spectrum of as-deposited MoOx-Si3N4 composite. (300℃, 90 mins.) 55
Fig.4.8 TEM micrograph of MoOx/Si3N4 powders prepared by MOCVD at 300℃for 60 mins in N2. 59
Fig.4.9 TEM micrographs of MoOx/Si3N4 powders prepared by MOCVD at 300℃for 60 mins in N2. 60
(a) bright-field image, (b)dark-field image. 60
Fig.4.10 TEM micrographs of MoOx/Si3N4 powders prepared by MOCVD at 300℃for 60 mins in N2. (a) Individual MoOx deposite, (b) island like MoOx deposites. 61
Fig. 4.11 Schematic illustration of nucleation and thin film formation[59]. (a) Nucleation (b) Grain Growth 63
(c) Coalescence (d) Filling of Channels 63
(e) Film Growth 63
Fig. 4.12 Equilibrium phase diagram of Mo-O system[60]. 65
Fig.4.13 (a) XRD patterns of as deposited MoOx/Si3N4 powders and powders reduced at (b) 1100℃and (c) 1300℃in 5﹪H2/N2 for 1 h. 66
Fig.4.14 XRD patterns of the composites sintered in N2 atmosphere for 1h, at (a)1600℃, (b)1700℃, (c)1800℃. 68
Fig.4.15 XRD patterns of the composite sintered at1800℃ for1hr in Ar atmosphere. 71
Fig.4.16 Relative density of Mo5Si3/Si3N4 nanocomposites as function of Mo5Si3 content. Samples were hot pressed in 10 atm N2 at 1850℃for 1h. 73
Fig.4.17 XRD patterns of 7wt﹪Mo5Si3/Si3N4 nanocomposites. Samples were hot pressed at 1850℃for 1hr in 10 atm N2. 75
Fig.4.18 SEM micrographs of hot pressed Mo5Si3/Si3N4 nanocomposites. Samples were hot pressed at 1850℃for 1hr in 10 atm N2. (a) monolithic Si3N4, and Si3N4 with (b) 2 wt﹪,(c)5 wt﹪,(c) 7 wt﹪Mo5Si3. 76
Fig.4.19 TEM micrograph bright field image of Mo5Si3/Si3N4 nanocomposites. Samples were hot pressed at 1850℃in 10 atm N2 for 1hr. A:Si3N4, B:Mo5Si3, C: amorphous phase. 78
Fig. 4.20 (a) EDS of A in Fig4.19. 79
(b) diffraction patterns of A in Fig4.19. 79
Fig. 4.21 (a) EDS of B in Fig4.19. 80
(b) diffraction patterns of B in Fig4.19. 80
Fig. 4.22 (a) EDS of C in Fig 4.19. 81
(b) diffraction patterns of C in Fig4.19. 81
Fig.4.23 TEM bright field image of Mo5Si3/Si3N4 nanocomposites. Samples were hot pressed at 1850℃in 10 atm N2 for 1 hr. 83
A: Submicro-Mo5Si3, 83
B, C: Nano-Mo5Si3. 83
Fig.4.24 Growth mechanism of the Mo5Si3 in Mo5Si3/Si3N4 composites during sintering. 84
Fig.4.25 TEM micrographs (bright field image) of Mo5Si3/Si3N4 nanocomposites. Samples were hot pressed at 1850℃in 10 atm N2 for 1hr. 86
A: inter grain-type nano-Mo5Si3, 86
B: intra grain-type nano-Mo5Si3. 86
Fig.4.26 Schematic description of 88
(a)epitaxially grownβ-Si3N4 from Mo5Si3, 88
(b)coalescence grown ofβ-Si3N4. 88
Fig.4.27 TEM micrograph (bright field image) of Mo5Si3/Si3N4 nanocomposites Samples were hot pressed at 1850℃fo in 10 atm N2 for 1hr. Grain boundaries pinned by Nano-Mo5Si3 grain are seen. 89
Fig.4.28 TEM observation bright image of Mo5Si3/Si3N4 interface. 91
(a) HRTEM image of interface. 91
(b) diffraction patterns of A in (a) showing Si3N4. 91
(c) diffraction pattern of B in (a) showing Mo5Si3. 91
Fig.4.29 HRTEM micrograph of nano- Mo5Si3/Si3N4 composite. Samples were hot pressed at 1850℃in 10 atm N2 for 1 hr. 92
(a) interface between Si3N4 and Mo5Si3. 92
(b) EDS results at the amorphous thin film interface. 92
Fig.4.30 (a) HRTEM micrograph showing the interface between Si3N4 and Mo5Si3, (b) Mo and Si content (at﹪) detected by EDS at different position in Mo5Si3. Samples were hot pressed at 1850℃ in 10 atm N2 for 1 hr. 93
Fig.4.31. Flexual strength of Mo5Si3 /Si3N4 composites as a function of Mo5Si3 content. Sample were hot-pressed at 1850 ℃in N2 for 1h. 95
Fig.4.32 Vickers hardness of Mo5Si3 /Si3N4 composites versus Mo5Si3 content. Sample were hot-pressed at 1850℃in N2 for 1h . 97
Fig.4.34 Fracture toughness of Mo5Si3 /Si3N4 composites versus Mo5Si3 content. Sample were hot-pressed at 1850℃in N2 for 1h. 98

表目錄

Table 2.1 Summary of the reported phase in coating from Mo(CO)6. 23
Table 2.2 Physical Properties of Molybdenum-Silicon Compounds 26
Table 3.1 Characteristics of Si3N4 powders(supplied by UBE Corp.) 34
Table 3.2 Characteristics of Mo(CO)6.(supplied by Strem Chemicals Corp.) 34
Table 4.1 SEM EDS chemical analysis of composites powder. 58
參考文獻

1.M.J. Hoffmann and G. Petzow, “Microstructure Design of Si3N4 Based Ceramics”, p.3-14 in Silicon Nitride Ceramics, Edited by I-W Chen, P.F. Becher, M. Mitomo, G. Petzow and T.S. Yen, Materials Research Society, Pittsburgh, PA, 1993.
2.M. Taguchi, “Application of High–Technology Ceramics in Japanese Automobiles”, Adv. Ceram. Mater., 2[4]752-62(1987).
3.A. K. Vasudevan, J. J. Petrovic, “A Comparative Overview of Molybdenum Disilicide Composites,” Mat. Sci. and Eng., A1555(1992)1-17
4.R. M. Aikin, Jr., “Strengthening of Discontinously Reinforced MoSi2 Composites at high temperature,” Mat. Sci. and Eng., A1555(1992)121-133
5.P. Peralta, R. Dockerson, J. R. Michael, “Residual Thermal in MoSi2-Mo5Si3 in-situ composites,’ Mat. Sci. and Eng., A,261-69 (1999)
6.K. Niihara, "New Design Concept of Structural Ceramics-Ceramic Nanocomposite." J. Ceram. Soc. Jpn., 99[10] 974-82(1991).
7.W. Clegg, New Way to Make Tough Ceramics, Interceram, Vol.40 No.6(1991)
8.M. Nawa, T. Sekino, Kniihara, "Microstructure and Mechanical Properties of Al2O3-Mo Nanocomposites," J. Jpn Soc. of Powd. And Powd. Metal., 39, 1104-1108 (1992).
9.A.W. Weimer, R.K. Bordia “Processing and properties of nanophase SiC/Si3N4 composites” Part B 30(1999) 647-655.
10.H.Park, K.Niihara, ”Microstructure and High Temperature Strength of Si3N4-SiC Nanocomposite ,”
11.Sajgalik, P., Structural development and properties of SiC/Si3N4 nano/micro composites. J. Mater. Sci. Lett., 1993,15,72-76.
12.M. Y. Kao, “Properties of Silicon Nitride-Molybdenum Disilicide particulate Ceramic Composites,” J. Am. Ceramic. Soc., 76{11} 2879-83(1993)
13.B. R. Zhang and F. Marino, “Reaction-Bonding Preparation of Si3N4/MoSi2 and Si3N4/WSi2 composites from Elemental powders,” J. Am. Ceramic. Soc., 80{1} 269-72(1996).
14.Tateoki Iizuka, Toshiro Murao, “Microstructures and Properties of Mo5Si2-Particle-Reinforced Si3N4-Matrix Composites,” J. Am. Ceramic. Soc., 85{4} 954-60(2002).
15.E.T. Turkdogan, P.M.Bills and V.A.Tiooett, “Silicon Nitrides:Some Physico- Chemical Properties”, J.Appl.Chem.,8,296-302(1958).
16.K.Matsuhiro and T.Takajashi, “Physical Properties of Sintered Silicon Nitride Controlled by Grain Boundary Chemistry and Microstructure Morphology”,p.11-5, in Proceeding of the MRS International Meeting on Advanced Materials, Edited by M.Doyama etal., Material Research Society, Pittsburg, PA, 1989.
17.D.Hardie, and K.H.Jack, “Crystal Structures of Silicon Nitride”, Nature, 180, 332-33(1957).
18.K.H.Jack, “The Role of Additive in the Densification of Nitrogen Ceramics”,p.3-14, in Final Technical Report, DAERO-78-G-012, European Research Office, U.S. Army, London, England, 1978.
19.G.R.Terwillinger, and F.F.Lange, “Pressureless Sintering of Si3N4 “, J.Mat.Sci., 10, 1169-73(1995).
20.R.Grun, “The Crystal Structure of β-Si3N4 ; Structural and Stability Considerations Between α- and β- Si3N4”, Acta Cryst., B35, 800-804(1979).
21.M.Peuckert, and P.Greil, “Oxygen Distribution in Silicon Nitride Powder”, J.Mat.Sci., 22, 3717-20(1975).
22.J.Weiss, ”Silicon Nitride : Composition, Fabrication Parameters, and Properties”, Ann. Rev. Mater. Sci., 11, 381-99(1981).
23.D.R.Messier, F.L.Riley, and R.J.Brook, “The α / β Phase Transformation”, J.Mat.Sci., 13, 1199-1205(1978).
24.V.K.Sarin, “On the α- to β- Phase Transformation in Silicon Nitride”, Mat.Sci. and Eng.,A105/106, 151-158(1988).
25.L.J.Bowen, R.J.Weston, T.G.Carthruthers, and R.J.Brook, “Hot-Pressing and the α-β Phase Transformation in Silicon Nitride”, J.Mat.Sci., 13,341-350(1978).
26.H.F.Priest, F.C.Burns, G.F.Priest, and E.C.Skaar, “Oxygen Content of Alpha Slicon Nitride”, J.Am.Ceram.Soc.,56[7]395(1973).
27.L.J.Bowen, T.G.Carthruthers, and R.J.Brook, “Hot-Pressing of Si3N4 with Y2O3 and LiO2 as Additives”, J.Am.Ceram.Soc.,61[7-8]335-339(1978).
28.K.Kijama, and S.Shirasaki, “Nitrogen Self Diffusion in Silicon Nitride”,J.Chem.Phys.,n65,2668-71(1976).
29.G.C. Deeley, J.M. Herbert, N.C. Moore, “Dense Silicon Nitride”, Powder Metall., 8, 145(1961).
30.K.Negita, “Effective Sintering Aids for Si3N4 Ceramics”, J.Mat.Sci.Letter, v4,755-758(1985).
31.R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites”, Ceram. Eng. Sci. Proc, 11[7-8] p667-694(1990)
32.K.T. Faber and A. G. Evans, “Crack Deflection Process-I. Thory “, Acta Metall., 31 [4]565-79(1983)
33.G. Wei and P. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate,” J. Am. Ceram. Soc., 67[8] 57191(1984)
34.T. Ohji, T. Hiranom A.Nakahira, and K.Niihara, “Particle/Matrix Interface and Its Role in Cerrp Inhibition Of Alumina/Silicon Carbide Nanocomposites,” J. Am. Ceram. Soc., 79[1]33-45(1996)
35.W. Clegg, New way to Make Tough Ceramics, Interceram, Vol.40 No.6 (1991)
36.Tateoki Iizuka, Toshiro Murao, “Microstructures and Properties of Mo5Si2-Particle-Reinforced Si3N4-Matrix Composites,” J. Am. Ceramic. Soc., 85{4} 954-60(2002).
37.金宗哲,新型陶瓷材料手冊,江蘇科學技術出版社(1995).
38.林慶章,”利用MOCVD及燒結製程製備奈米鉬/氧化鋁複合材料及其微結構發展”,國立台灣大學材料科學及工程學研究所 (2000)
39.李正中, “;薄膜光學及鍍膜技術”, 藝軒圖書出版社(1999)
40.李明東, “添加氮化鈦,碳化鈦及表面披覆氮化鈦之碳化鈦於氮化矽基複合材料的研究”, 國立成功大學材料科學及工程學研究所 (1994)
41.H. Itoh, K. Hattori, S. Naka, “Rotary Powder Bed Chemical Vapor Deposition of Titanium Nitride on Spherical Iron Powder,” J. Mater. Sci., 24 (1989)3643-46.
42.S. Morooka, “Electroconductivity of Sintered Bodies of α-Al2O3-TiN composites prepared by CVD reaction in a Fluidized Bed,” J. Mater. Sci., 28(1993)3168-72
43.Brian Chapman, “Glow Discharge Processes”, John Wiley and Sons, New York,1980.
44.羅名宏,”鉻、鉬羰化物的披覆製程與鍍層性質性質研究”,國立台灣大學材料科學及工程學研究所 (1996)
45.W. Hieber and E. Romberg, Z. Anorg. Allg. Chem., 221(332),(1935).
46.J. J. Lander, and L. H. Germer, “Plating Molybdenum,Tungsten, and Chromium by Thermal Decomposition of Their Carbonyls,”American Institute of Mining and Metallurgical Rnginerrs,Eng.Tech.Pub.No.2295,Sep.(1947)
47.M. H. Lo and W. J. Wei, “Processingand Properties of (Cr, Mo) Oxycarbides from MOCVD,” Appl. Oragnometal. Chem., Vol. 12, 1-20(1998)
48.T. Ivanova, “Investigation of CVD molybdenum oxide films”, Mater. Letters, 53, 250-257(2002)
49.J. Subrahmanyam, “Combustion Synthesis of MoSi2-Mo5Si3 Composites,” J.Mater.Res., 9[10]2620-26(1994).
50.D. P. Mason, D. C. Van Aken,”On the Microstructure and Crystallography of Directionally Solidified MoSi2-Mo5Si3 Eutectics,” Acta Metall. Mater.,43[3]1189-99 (1995).
51.J. C. Schuster “Silicon nitride-metal joints: phase equilibria in the systems Si3N4-Cr, Mo, W and Re” J. Mater. Sci. 23(1988)2792-2796
52.A. G. EVANS, “Fracture Toughness Determination by Indentation,” J. Am. Ceram. Soc., 59(7-8)371-72(1976)

53.陳志榮,”奈米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析”, 國立台灣大學材料科學與工程學研究所。(2000)
54.C.D. Wagner, “Handbook of X-ray Photoelectron spectroscopy”, pp.220, (1978)
55.Handbook of Chemistry and Physics, CRC press, 72 ed
56.R.A.Robie, “Thermodynamic Properties of Minerals and related Substance at 1 Bar (105 Pascals) Pressure and at Higher Temperature”, 亞東書局, 190(1928).
57.Chiang, Y. M., D. Birnie III, and W. D. Kingery(1997) “Physical Ceramics,” pp.371-391,John Wiley & Sons, New York, NY, USA.
58.T. Ivanova, M. Surtchev, K. Gesheva, “Investigation of CVD molybdenum oxide films,” Mater. Letters, 53(2002)250-257
59.莊達人,VLSI製造技術,高立圖書有限公司(1995)。
60.Gorden, P. (1968) “ Principles of phase diagrams in materials system,” pp. 1613-1614, McGraw-Hill, NY, USA.
61.T. Toshio, “Kinetics of Reaction between Si3N4 and Mo,” Journal Of the Ceramic Society Of Japan, Int. Edition [101] 986-991(1993).
62.O. Knacke, O.Kubaschewski, “Thermochemical Properties of Inorganic Substrance,” (1991)
63.V. K. Sarin, “On the α- to –β Transformation in Slicon Nitride”, Mater. Sci. and Engi., A105-106(1988)
64.O. Sudre, “Effect of inclusion on Densification: II, Numerical Model” , J. Am. Ceram. Soc., 75 (3)525-31
65.李建樹,韋文誠. “二矽化鉬/碳化矽複合材料之反應、燒結及性質之研究,” 國立台灣大學材料科學與工程學研究所。(1996)。
66.M. Ohashi, S. Kanzaki, and H. Tabata, “Processing, Mechanical Properties, and Oxidation Behavior of Silicon Oxynitride Ceramics,” J. Am. Ceram. Soc., 74[1]109-114(1991).
67.N. J. Petch, “Cleavage Strength of Polycrystals” J.Iron and Steel Inst. (London), 174[1]25-28(1953)
68.H. Choe, T. Hsieh, and J. Wolfenstine, “The effect of powder Processing on the Coefficient of Thermal Expansion of MoSi2-Si3N4 Composites,” Mater. Sci.Eng. A,237,250-255(1997).
69.J. J. Petrovic, M. I. Pena, “Mechanical Behavior of MoSi2 Reinforced-Si3N4 Matrix Composites,” J. Am. Ceram. Soc., 80[12]3070-76(1997)
70.J. A. Hawk, D. E. Alman, and J. J. Petrovic, “Abrasive Wear of Si3N4 /MoSi2 Composites,” Wear, 203-204, 247-56 (1997)

71.Brook, R.J.(1969) “Pores and grain growth Kinetics.” J. Am. Ceram. Soc., 52(6),pp. 339-340
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊