(18.210.12.229) 您好!臺灣時間:2021/03/03 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊耀昇
研究生(外文):Yao-Sheng Yang
論文名稱:HCD法製備漸進TiCN陶瓷硬質薄膜之研究
論文名稱(外文):Properties of graded TiCN coatings deposited by Hollow Cathode Discharge ion coating technique
指導教授:曹紀元李世欽李世欽引用關係
指導教授(外文):Chi-Yuan Albert TsaoShih-Chin Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:198
中文關鍵詞:HCD離子鍍陶瓷薄膜磨耗行為Arrhenius 方程式反應自由能TiCN漸進鍍層
外文關鍵詞:TiCN graded filmWear behaviorArrhenius equationReaction energyceramic filmHCD ion plating
相關次數:
  • 被引用被引用:12
  • 點閱點閱:689
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
陶瓷硬質薄膜鍍層可以有效的改善刀具的耐磨性、提高其使用壽命。其中研究最為廣泛的TiC和TiN陶瓷硬質薄膜也實際應用於工程中。但是TiC其性質比較脆,且高溫硬度差;TiN作為硬質鍍層薄膜,其硬度仍嫌不足,而且在高溫環境下使用時容易有氧化問題,無論是TiC或TiN陶瓷硬質薄膜鍍層很難在超過550℃工作環境中使用。而三元陶瓷硬質薄膜鍍層TiCN則結合TiC和TiN兩種陶瓷硬質薄膜的優點,使得三元陶瓷硬質薄膜鍍層TiCN 無論是物理或是機械性質均較單層的TiC或TiN 陶瓷硬質薄膜鍍層為佳。

本研究是利用中空陰極放電法離子鍍設備在基板上沉積TiCN漸進鍍層,研究氣體流量、負偏壓等沉積參數對薄膜化學成分、微觀結構(成分組成、擇優取向、晶粒大小等)、機械性質(硬度、膜/基間結合強度、摩耗性能等)的影響。

本研究也將利用基本化學反應方程式、Arrhenius方程式及相關的假設,推導三元陶瓷薄膜在反應時,其組成薄膜中二元成分生成反應熱能障差。利用本研究推導的公式,可在不同製程溫度條件下,利用三元陶瓷薄膜中所含二元成分莫耳數不同,計算其在反應腔中相關化學反應的生成反應熱能障差,這可以簡易解決在非平衡狀態下,各薄膜成分反應的情況,並可藉此推導,來解釋部分薄膜成長的特性。

本研究首先探討負偏壓對於濺鍍硬質薄膜的影嚮,負偏壓可對一開始的基材做濺鍍清潔的功用,可提高反應粒子的能量。對於薄膜的沈積速率、基材表面層結構、界面結合狀態及薄膜的性能結構均產生影響。隨著偏壓增加,TiCN薄膜的晶粒尺寸都增加。隨著負偏壓增加,TiCN薄膜擇優取向由(111)方向轉為(200)或是(220)。有負偏壓時沉積的薄膜比無負偏壓時沉積的薄膜具有更好的機械性質。對於各製程條件中,熔滴對於薄膜的結構、成分、機械性質影嚮也做了詳細探討。

利用X-ray 繞射儀的分析,TiCN硬質薄膜擁有面心立方結構,且其晶格常數隨著C含量的增加而逐漸變大,在單層薄膜中其擇優取向由 (111)方向轉為(200)或是(220)。而在漸進薄膜鍍層中則未有明顯的轉變跡象。另外在機械性質方面,漸進鍍層也呈現較佳的性質。對於硬度、附著性等機械性質的量測結果,提供我們未來發展硬質鍍膜的一項重要資料。
The effect of hard coatings is very prominent for improving the wear-resistant character of tool-knife so that the using life-span of material can be extended markedly. The well-studied TiN film and TiC film have been widely used in industry as well. But there are some shortcomings both of them. TiC film is somewhat crumbly and its hardness under high temperature is relatively low. As hard coating, the hardness value of TiN is not satisfying. Furthermore, they cannot be used above 550 0C because of oxidation.

The tri-phase TiCN thin film, combining the advantages of the high hardness of TiC, the high ductility of TiN, and high adhesion strength, possesses much better mechanical properties than single-phase TiC or TiN.

In the study, the TiCN graded-coatings were deposited by HCD ion plating system. The effects of deposition parameter (including gas flow, bias voltage) on chemical component, microstructure (phase, preferred orientation and domain size), mechanics performance (roughness, hardness, combination intensity, friction and wear character et al.).

Finally, the Arrhenius equation and associated hypotheses are used to show how the heat of formation influences the relative fractions of binary components in tri-phase ceramic films. With a simple expression the heats of formation under different volume fractions and temperature predicted. This expression can be used to solve the formation condition of each film’s component under non-equilibrium conditions and can also be used to understand growth mechanisms in the films.

When the bias voltage was introduced during the process of deposition, the substrate surface was well cleaned; The energy of active particles was enhanced; The resputtering leads to the variation of deposition rate, crystallize and orientation. The mechanics performance of the film deposited under bias voltage are excellent comparing with the film free of bias voltage. The question of "dimple" during the process of HCD ion plating deposition was discussed. The effects of dimples on the film’s structure, mechanical properties were studied.

X-ray diffraction analysis of TiCN films belongs to FCC phase and the lattice parameter of TiCN film increase with the increase of C content. In the monolayer TiCN film, the preferred orientation changes from (111) to (220) with the increase of C content, but the graded-film is not. The mechanics properties of the TiCN graded-film are excellent comparing with the TiCN monolayer film.

The validity of measuring hardness of film by indenting and testing the combination intensity by press experiment was entatively surveyed. So the mechanic performance of the film was appraised correctly.
中文摘要•••••••••••••••• I
英文摘要••••••••••••••• III
致謝•••••••••••••••••• IV
目錄•••••••••••••••••• IX
圖目錄•••••••••••••••• XIII
表目錄••••••••••••• XXIII
第一章 前言•••••••••••••••1
1.1 薄膜技術發展••••••••••• 1
1.2 TiCN陶瓷硬質薄膜研究回顧••••• 2
1.2.1 TiCN陶瓷硬質薄膜的組織結構••• 3
1.2.2 TiCN陶瓷硬質薄膜的擇優取向••• 6
1.2.3 TiCN陶瓷硬質薄膜的相關研究••• 8
1-3本論文的研究背景及主要內容••••• 9
第二章 基 礎 理 論•••••••••• 12
2.1 氣相沉積與離子鍍膜技術的發展••• 12
2.1.1 氣相沉積技術•••••••••• 12
2.1.2離子鍍•••••••••••••• 17
2.1.2.1離子鍍的原理及特點••••••• 20
2.1.2.2離子鍍的裝置•••••••••• 25
2.1.2.3離子鍍的基本製程•••••••• 25
2.1.2.4 影嚮離子鍍薄膜的因素••••• 27
2.2中空陰極離子濺鍍法••••••••• 27
2.2.1 HCD法離子濺鍍裝置•••••••• 28
2.2.2 HCD電子槍工作原理•••••••• 31
2.2.3中空陰極對製程參數的影嚮••••• 31
2.2.3.1鉭管的尺寸••••••••••• 33
2.2.3.2沉積速率•••••••••••• 33
2.2.3.3基板負偏壓••••••••••• 34
2.2.3.4工作氣壓•••••••••••• 34
2.2.3.5基板溫度•••••••••••• 34
2.3陶瓷硬質薄膜的硬度和強度特性•••• 35
第三章 實 驗 方 法••••••••••• 38
3.1實驗儀器•••••••••••••• 38
3.2 實驗規劃••••••••••••• 40
3.2.1 偏壓改變對於TiCN鍍膜的影嚮••• 40
3.2.2 製備單層TiCN硬質鍍膜•••••• 40
3.2.3反應氣體比例的改變對於TiCN漸進硬質鍍膜的影嚮 43
3.3 實驗材料••••••••••••• 43
3.4 薄膜之製備•••••••••••• 47
3.4.1 基材之準備••••••••••• 47
3.4.2 以HCD濺鍍法成長薄膜••••••• 47
3.5 性質量測••••••••••••• 49
3.5.1 成份分析••••••••••• 49
3.5.2 膜厚之測定••••••••••• 50
3.5.3 X-ray繞射分析•••••••••• 50
3.5.3.1 相鑑定•••••••••••• 50
3.5.3.2 晶粒尺寸的計算•••••••• 50
3.5.4 掃描式電子顯微鏡觀察•••••• 51
3.6 機械性質量測••••••••••• 51
3.6.1表面粗糙度分析•••••••••• 51
3.6.2鍍層硬度分析••••••••••• 51
3.6.3附著性測試•••••••••••• 53
3.6.4磨耗性測試•••••••••••• 53
第四章 負偏壓對於製程的影嚮•••••• 58
4.1 基材溫度的影嚮•••••••••• 58
4.2 基材粗糙度的影嚮••••••••• 58
4.3 薄膜成長速率的影嚮•••••••• 62
4.4 薄膜表面粗糙度的影嚮••••••• 64
4.5 薄膜表面組成的影嚮•••••••• 66
4.6 薄膜表面晶粒尺寸的影嚮•••••• 69
4.7 薄膜表面硬度的影嚮•••••••• 71
4.8 薄膜表面液滴狀組織的影嚮•••••• 73
4.9 薄膜結構的影嚮•••••••••• 78
4.10 結論••••••••••••••• 81
第五章 製程參數對薄膜物理性質的影嚮•• 83
5.1 薄膜表面型態的影嚮•••••••• 83
5.2 薄膜沈積速率的影嚮•••••••• 88
5.3 薄膜組成成分的影嚮•••••••• 93
5.3.1 單層TiCN陶瓷硬質薄膜•••••• 93
5.3.2 漸進層TiCN陶瓷硬質薄膜••••• 102
5.4 薄膜結晶晶粒的影嚮•••••••• 125
5.4.1單層陶瓷硬質薄膜鍍層之晶粒大小•• 127
5.4.2漸進陶瓷硬質薄膜鍍層之晶粒大小•• 129
5.5 薄膜結構的影嚮•••••••••• 134
5.5.1單層陶瓷硬質薄膜鍍層之繞射圖••• 134
5.5.2漸進陶瓷硬質薄膜鍍層之繞射圖••• 137
5.6結論••••••••••••••••142
第六章 薄膜機械性質••••••••• 143
6.1 薄膜表面粗糙度•••••••••• 143
6.2 薄膜硬度••••••••••••• 151
6.3 薄膜附著性•••••••••••• 154
6.4 薄膜磨耗性質••••••••••• 159
6.4.1摩擦係數••••••••••••• 159
6.4.2鍍膜試件磨耗最終溫度••••••• 165
6.4.3磨耗率•••••••••••••• 169
6.5 結論••••••••••••••• 171
第七章 三元薄膜中二元成分反應自由能障差計算模式••••••••••••••••• 174
7.1 前言••••••••••••• 174
7.2 自由能障差計算模式•••••••• 177
7.3 實驗的驗證•••••••••••• 182
7.4 結果與討論•••••••••••• 182
7.5 結論••••••••••••••• 185
總結論•••••••••••••••• 187
參考文獻••••••••••••••• 189
自述••••••••••••••••• 198
[1]G. Hakasson, G. Loof, H. Lijungctantz, I.P. Ivanov, Surf. Coat. Technol. 17 (1994) 26.
[2]R.L. Boxman, S. Goldsmish, Surf. Coat. Technol. 48 (1991) 51.
[3]L. George, W. D. Kaplan, M. Bamberger, Mat. Letters, 35 (1998) 344.
[4]P. Villars, A. Prince, H. Okamoto, Handbook of Ternary Alloy Phase Diagrams, vol.6, A.S.M. International, 1995, 7155.
[5]X. Shangzhi, W. Huiping, Z. Shuzhu, A209 (1996) 294.
[6]A.A. Adjaottor, E.I. Meletis et al., Surf. Coat. Technol. 76 (1995) 142.
[7]S.I. Alyamovskii, Teplofiz. Vys. Temp. 11 (3) (1973) 680.
[8]J.E. Sundgren, B.0. Jonhasson, S.E. KarlssonandH, T.G. Hentzell, Thin Solid Films, 128 (1985) 21.
[9]H.O. PIerson, Thin Solid Films, 40 (1977) 4.
[10]M. Kobayashiand, Y. Dol, Thin Solid Films, 54 (1978) 61.
[11]L.E. Toth, Transition Metal Carbide & Nitride, Academic Press , New York, 1971.
[12]D.S. Rickerby and P.J. Burnett, Thin Solid Films, 157 (1988) 195.
[13]H.M. Gabriel, T. Takagi(ed.), Proceeding International Engineering Congregation, Kyoto, Sep., 12-16, , Institute of Electical Engineers of Japan, Tokyo, 1983, 1311.
[14]A. Matthews and H.A. Sundquist, Ibid, 1325.
[15]R.F. Bunshah, Handbook of deposition technologies for films and coatings, 2nd , Noyes Publications, 1994, 683.
[16]A.E. Guile, Proc. Iee. Reviews, 118, (9) (1971) 1131.
[17]M. Kobayashi and Y. Dol, Thin Solid Films, 54 (1978) 67.
[18]E. Roman and J.L.de Segovia, Materals Science and Engineering, A163 (1993) 197.
[19]P.A. Steinmann and H.E. Hintermann, J. Vac. Sci. Technol. A 3(6) (1985) 734.
[20]M. Tamura and H. Kubo, Surf. Coat. Technol., 49 (1991) 194.
[21]M. Tamura and K. Fukuda., ISIJ International, 33 (9) (1993) 949.
[22]S. Wouters , S. Kadlec , C. Quaeyhaegens, L.M. Stals, Surf. Coat. Technol. 92 (1997) 56.
[23]H.-R. Stock , A. Schulz , M. Kopnarski, T. Gross, Surf. Coat. Technol. 98 (1998) 918.
[24]J. Deng and M. Braun, Surf. Coat. Technol. 70 (1994) 49.
[25]J. akadoum , H.H. Bennani , M. Allouard, Surf. Coat. Technol. 88 (1996) 232.
[26]Y. Y. Guu and J. Lin, Wear 2109 (1997) 245.
[27]Su. Y L, Yao. S H, Wei. C S, Kao. W H, Wu. C T, Surf. Coat. Technol., (1), (1999) 39.
[28]K. L. Rutherford, S. J. Bull, E. D. Doyle, I.M. Hutchings, Surf. Coat. Technol. 80, (1-2), (1996) 176.
[29]X. Zhao, J. Liu, B. Zhu, Z. Luo, H. Miao, Ceramics International 23, (3), (1997) 197.
[30]B.E. Jacobson, C.V. Deshpandey, H.J. Doerr, A.A. Karim, R.F. Bunshah, Thin Solid Films, 118 (1984) 285.
[31]S. Thomas, W. Thomas, S.H. Joachim, S. Peter, S. Bernd, Surf. Coat. Technol., 120-121 (1999) 226.
[32]H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T.Santhanam, P.L.Hegde, R.M. Penich, Surf. Coatings Technol., 139(1) ( 2001) 25.
[33]M.A. Capano, A.A. Voevodin, J.E. Bultman, J.S. Zabinski, Scripta Materialia 36, (10) (2000) 1101.
[34]W. Precht, A. Czyzniewski, M. Pancielejko, W. Walkowiak, E. Lunarska, Vacuum 47 (6-8) (1996) 867.
[35]A.T. Santhanam, D.T. Quinto, G.P. Grab, International journal of Refractory Metals & Hard Materials 14, (1-3) (1996) 31.
[36]T. Hirsch, P. Mayr, Surf. Coat. Technol., 36, (3-4) (1988) 729.
[37]E. J. Bienk, H. Reitz, N. J. Mikkelsen, Surf. Coat. Technol., 77, (1-3) (1995) 475.
[38]W. –D. Munz, Ceram. ACTA, 7, (3) (1995) 49.
[39]M. Podob, Plating and Surface Finishing 83, (11) (1996) 42.
[40]H.M. Gabriel and K.H. Kloos, Thin Solid Films, 118 (1984) 243.
[41]H. Holleck, J. Vac. Sci. Technol. A, 4 (1986) 2661.
[42]W.D. Sproul, J. Vac. Sci. Technol. A, 12 (1994) 1595.
[43]H. Kajioka, K. Higuchi and Y. Kawashimo, Thin Solid Films, 228 (1993) 280.
[44]P. Hedenqvist, M. Olsson and S. Hogmarx, Surf. Eng., 8 (1) (1992) 39.
[45]E. Damond and P. Jacquot, Materials Science and Engineering" A140 (1-2) ( 1991 ) 838.
[46]O. Knotek, F. Loffler and G. Kramer, Surf. Coat. Technol., 61 ( 1993 ) 320.
[47]J.M. Schneider, A. Voevodin, C. Rebholz, A. Matthews. J.H.C. Hogg, D.B. Lewis and M. Ives, Surf. Coat. Technol., 74/75 ( 1995) 312.
[48]W. Precht, E. lunarska, A. Czyzniewski, M. Pancielejko and W. walkowiak, Vacuum, 47 ( 1996 ) 867.

[49]I.J. Smith, W.D. Munz, L.A. Donohue, I. Petrov, and J.E. Greene , Surf. Eng., 14 (1) (1998) 37.
[50]Munsterer and K. Kohlhof, Surf. Coat. Technol., 74/75 (1995) 642.
[51]A.J. Perry, J.R. Treglio, A.F. Tian, Surf. Coat. Technol., 76/77 (1995) 815.
[52]Y. Qiang, Y. Thurner, Th. Reiners, O. Rattunde, H. Haberland., Surf. Coat. Technol., 100/101 (1998) 27.
[53]李國英主編,表面工程手冊,機械工業出版社,1998年12月,第5篇,第5章.
[54]錢苗根主編,材料表面技術及其應用手冊,機械工業出版社,1998年10月,第40章.
[55]B. Berghaus, UK Patent No.5 10 (1938) 993.
[56]D.M. Mattox, Electrochemical Technology, 2 (9) (1964) 285
[57]D.M. Mattox, J.Appl.Phys., 34 (1963) 2493.
[58]D.R. Rickerby, A. Matthews, Advanced Surface Coatings: A Handbook of Surface Engineering, New York, 1991, Chap 3, 45.
[59]J.L. Miles, J. Electrochemical Society, 115 (1968) 1255.
[60]陳寶清著,真空表面處理工學,傳勝出版社,1994年8月,第4篇第1章.
[61]竹田博光、賴耿陽著,陶瓷材料覆膜技術,復漢出版社,1989年3月,第1章.
[62]金屬加工用刀工具材料及處理技術手冊,經濟部技術處科技專案成果,2000年4月,第4章.
[63]J.A. Thornton, Annu. Rev. Mater. Sci., 7 (1977) 239.

[64]陳寶清著,真空表面處理工學,傳勝出版社,1994年8月,第4篇第3章.
[65]PVD.CVD皮膜ソ基礎シ應用,表面技術協會編,楨書局(日本),1994年8月,56.
[66]J.S.Koehler, Phys. Rev.,B2 (1970) 547.
[67]S.L.Lehoczky,Jappl. Phys., 49 (1978) 5479.
[68]S.L.Lehoczky,Phys. Rew. Lett, 41 (1978) 1814.
[69]R.F. Bunshah, R. Nimmagadda, H.J. Doerr, B.A. Movcham, N.I. Grechanuk and E.V.Dabizha, Thin Solid Films, 72 (1980) 261.
[70]R.W. Springer and C.D. Hodford, J. Vac. Sci. Technol., 16 (1979) 877.
[71]R.F. Bunshah, C. Deshpandey, H.J. Doerr, Thin Solid Films, 96 (1982) 5.
[72]B.A. Movchan, A.V. Demchishin, G.F. Badelenko, Thin Solid Films, 97 (1982) 215.
[73]B.M. Davis, D.N. Seidman, AMoreau, J.B. Ketterson, J. Mattson, M. Grimsditch, Phys.Rev. B, 43 (1991) 9304.
[74]H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T. Santhanam, P.L. Hegde, R.M. Penich, Surf. Coat. Technol., 139, 1 (2001) 25.
[75]N. Maria, L. Mats, Surf. Coat. Technol., 116-119 (1999) 108.
[76]N. Maria; L. Mats, Surf. Coat. Technol., 120-121 (1999) 528.
[77]O. Knotek, F. Loffler, G.Kramer, International Journal of Refractory Metals and Hard Materials ,14,(1-3) (1996) 195.
[78]J. Cawley, J.M. Titchmarsh, L.A. Donohue, Surf. Coat. Technol., 86-87, Issue: 1-3, December 1 (1996) 357.
[79]G.E.D. Errico, E. Guglielmi, Journal of Materials Processing Technology 78 (1-3) (1998) 48.
[80]R.A. Andrievski, I.A. Anisimova, V.P.Anisirnov, Thin Solid Films, 205 (1991) 171.
[81]U. Helmeerddon, S. Todorova, S.A. Barnett, J. E. Sundgren, L.C. Markert, J.E.Greene, J. Appl. Phys.,62(2) (1987) 481.
[82]P.B. Mirkarimi, M. Shinn, S. Kumar, M. Grimsditch, S.A. Barnett, J. Appl. Phys., 7(4) (1992 ) 901.
[83]J.W. Cahn, Acta Metall., 1 (1963) 1274.
[84]T. Arai, H. Fujita: Watanabe M., Thin solid films 154 (1987) 387.
[85]L.S. Wen, R.F. Huang, J. Mater. Sci. Technol., 14 (1998) 289.
[86]A. Edemir, C.C. Cheng, Surf. Coat. Technol.,41 (1990) 285.
[87]J.L. Vossen, W. Kern, Thin Film Processes, Academic Press, New York, 1978.
[88]C.N. Tai, E.S. Koh, K. Akari, Surf. Coat. Technol.,43/44 (1990) 324.
[89]王福貞,聞立時著,表面沈積技術,中國機械工程學會熱處理協會出版,1987年3月,第二章,124.
[90]錢苗根主編,材料表面技術及其應用手冊,機械工業出版社,1998年10月,第46章, 802.
[91]J.E. Sundgren, Thin Solid Films, 128 (1985) 21.
[92]M.K. Hibbis, B.O. Johansson, J.E. Sundgren, U. Helmersson, Thin Solid Films, 122 (1984) 115.
[93]B.E. Jacobson, C.V. Deshpandey, H.J. Doerr, A.A. Karim, R.F. Bunshah, Thin Solid Films, 118 (1984) 28.
[94]A. Matthews, D.G. Teer, Thin Solid Films, 72 (1980) 367.
[95]P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, Inter. J. of Refractory Metals and Hard Materials, 17, (1-3) (1999) 163.
[96]D.S. Rickerby, P.J. Burnett, Metallurgy & Protective Coatings, (1987) 195.
[97]G.W. Mcclure, J. Appl. Phys., 45(5) (1974) 2078.
[98]D. Sanderw, J. Vac. Sci. Technol., A7 (1987) 2339.
[99]P. Tomas, R. Smith, Proc. 3rd Int. Conf. On Manf. Eng. Newcastle, Australia, 1986, 49.
[100]P. Tomas, Mater. Australia, 18 (1986) 49.
[101]A. Bendavid, P.J. Martin, R. P. Netterfied, T.J. Kinder, Surf. Coat. Technol.,70 (1994) 97.
[102]D.N. Lee, J. Mater. Sci. 24 (1989) 4375.
[103]R.P. Howson, A.G. Spencer, K. Oka, R.W. Lewin, J. Vac. Sci. Technol. A 7 (3) (1989) 592.
[104]L.F. Senna, C.A. Achete, T. Hirsch, F.L.J. Freire, Jr, Surf. Coat. Technol. 94/95 (1997) 390.
[105]R.F. Bunshah, Deposition Technologies for Films and Coatings, Noyes Publications, 1982, 4.
[106]鍾宏碩,中國鋼鐵股份有限公司,技術報告,1992,27.
[107]R.F. Bunshah, Deposition Technologies for Films and Coatings, Noyes Publications, 1982, 30.
[108]Web site: http:// Wulff.mit.edu/pt/c.htm, and http:// Wulff.mit.edu/pt/n.htm
[109]M. Kishi, M. Suzuki, K. Ogawa, Jpn. J. Appl. Phys. 31 (1992) 344.
[110]D.S. Rickerby, J. Vac. Sci. Technol. A 4 (1986) 2809.
[111]D.S. Rickerby, A.M. Jones, B.A. Bellamy, Surf. Coat.Technol., 37 (1989) 111.
[112]J.M. Schneider, A. Voevodin, C. Rebholz, A. Mattews, J.H.C. Hogg, G.B. Lewes, M. Eves, Surf. Coat.Technol., 74-75 (1995) 312.
[113]C. Quaeyhaegens, G. Knuyt, J.D. Haen, L.M. Stals,Thin Solid Films, 258 (1995) 23.
[114]T. Miyano, Kitamura, Surf. Coat.Technol., 65 (1994) 179.
[115]J. Wohle, K.T. Rie, A. Gebauer, H.K. Tonshoff, C. Blawit, Surf. Coat. Technol.,74/75 (1995) 375.
[116]Y. Chen, Y. Sun, F. Zhang, H. Mou, Vacuum, 42 (16) (1991) 1059.
[117]J.M. Schneider, A. Voevodin, C. Matthews, A. Hogg, J.H.C. Lewis, Surf. Coat. Technol. 74/75 (1995) 312.
[118]張世賢, 國立成功大學材料科學及工程研究所碩士論文,1995.
[119]賴耿陽譯,實用金屬表面檢查試驗,日本金屬表面技術協會編輯,復漢出版社,第一篇第三章,1974,6.
[120]B. E. Jacobson, C.V. Despandey H.J. Doerr, A.A. Karim, R.F. Bunshah, Thin solid films, 118 (1984) 285.
[121]H.M. Gabriel, K.H. Kloos, Thin Solid Films, 118 (1984) 243.
[122]P.A. Strinmann, H.E. Hintermann, J. Vac. Sci. Technol. A, 3 (1985) 2394.
[123]H.Randhawa, Thin Solid Films,153 (1987) 209.
[124]W. Heinke, A. Leyland, A.Matthews, G. Berg, C. Friedrich, E. Broszeit, Thin Solid Films, 270 (1995) 431.
[125]L. Fang, Q. Zhou, Q. Li, Wear 219, (2) (1998) 188.
[126]古永延, 國立成功大學機械工程研究所博士論文,1997.
[127]R.F. Bunshah, Handbook of deposition technology for films and coatings, 2 Ed., 1994, 131.
[128]R. Mientus, K. Ellmer, Surf. Coat. Technol. 116/119 (1999) 1093.
[129]T. Matsui, T. Fukusshima, M. Shigematsu, H. Mabuchi, K.Morii, J. Alloys & Compounds, 236 (1996) 111.
[130]R. Pretorius, T.K. Marais, C.C. Theron, Mat. Sci. & Eng. R, 10 (1993) 1.
[131]M. Fukuhara, H. Mitani, Powder Metall., 25 (1982) 62.
[132]I. J. Jung, S. Kang, S. H. Jhi, J.Ihm, Acta mater., 47, 11 (1999) 3241.
[133]S. Kang, Powder Metall., 40 (1997) 139.
[134]S. H. Jhi, J.Ihm, Phys. Rev., B56 (1997) 13826.
[135]E. Ertuerk, O. Knotek, W. Bergmer et al., Surf. Coat. Technol. 46 (1991) 390.
[136]D.N. Lee, J. Mat. Sci., 24 (1989) 4375.
[137]X. Shangzhi, W. Huiping, Z. Shuzhu, Mat. Sci. & Eng. A209, (1996) 294.
[138]M.W. Chase, NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, (1998) 1951.
[139]K.D. Carlson, C.R. Claydon, C. Moser, J. Chem. Phys., 46 (1967) 4963.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔