跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧錦均
研究生(外文):Chin-Chun Lu
論文名稱:球墨鑄鐵之放電加工表面急速凝固層之Al及Si電極效應探討
論文名稱(外文):Effects of Al and Si electrodes on the rapidly-solidified surface layer of spheroidal graphite cast iron by electro-discharge machining
指導教授:陳立輝陳立輝引用關係呂傳盛呂傳盛引用關係
指導教授(外文):Li-Hui ChenTruan-Sheng Lui
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:急速凝固層放電加工合金化
外文關鍵詞:SiEDMAlalloyedrapidly solidified layer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以放電合金化方式進行肥粒鐵基球墨鑄鐵表面改質,在適當電極極性及成份(純Cu、Al及Si)控制下,將矽及鋁等元素溶入試片。實驗方向除包括放電加工特性探討、放電表面急速凝固層微觀組織形貌、成份及相分析外,亦進行表面改質層耐王水腐蝕及硬度等測試。
結果顯示,放電急速凝固層厚度會隨脈衝時間及衝擊係數增加而增加。放電表面急速凝固層皆為相當微細之樹枝狀晶(220~420nm),並存在許多微細石墨(500 nm~2μm),可能是絕緣液中雜質造成石墨的重新晶出所形成。由成份分析發現,以電極材料為負極時,能將電極所含之合金元素有效溶入試件急速凝固層,且溶入之合金元素含量有隨遠離放電表面距離而遞減的現象。此外,以純銅為電極(正極)時,則發現急速凝固層未發生合金化。
組織分析結果顯示放電表面急速凝固層,其相組成及成份隨電極成分的變化而有所不同。以純銅為電極(正極)、未合金化的改質層由非平衡ε相及γ相所組成;以純矽為電極時,試料之急速凝固層則為固溶大量矽原子的γ相、介穩ε相及具斜方晶結構之FeSiC(iron silicocarbide)所組成;以純鋁為電極時,試料之急速凝固層組織相經分析為γ相、Fe3C碳化物、ε相及具fcc結構之非平衡κ相(AlFe3Cx)。
耐王水腐蝕測試結果顯示,合金化之改質層具有較佳的耐腐蝕能力,其中矽電極的耐腐蝕效果最為顯著,可能與矽之大量固溶有關。硬度測試結果則顯示,試料放電表面改質層之硬度相當高,可達Hv1300至1800,此外,硬度亦有隨遠離放電表面而遞減的現象,且經合金化之改質層硬度皆優於未合金化者。
Considering that alloying element can be introduced into the EDMed (electro-discharging machined) surface of the specimen through appropriately controlling the compositions and polarities of the electrodes, surface modification of ferritic spheroidal graphite (SG) cast iron by electro-discharge alloying (EDA) was performed in this study. Pure Cu、Al and Si were chosen as electrode materials. Characteristics of the surface modification layer of SG cast iron, including the microstructural features, hardness and corrosion resistance against aqua regia were investigated.
The results reveal that the thickness of surface modification layer increased with increasing pulse duration time and duty factor. The rapidly solidified layer showed a fine dendritic structure (whose second dendrite arm spacing (SDAS) is of about 220~420nm) with fine spheroidal graphite particles (whose diameter are about 500nm~2μm) in all the testing conditions. And the fine spheroidal graphite might nucleate on the impurities in dielectric fluid during the rapid solidification. Notably, electrode materials could be effectively transferred to the rapidly solidified layers as the electrode was set as the cathode, and the content of the transferred element reached a maximum value in the vicinity of the electro-discharged surface and was getting lower in the inner regions. Also, the rapidly solidified layer was unalloyed when the electrode (Cu) was set to be the anode.
The structure analysis results show that the phases and components of rapidly solidified layers varied with the electrode materials. The aforementioned unalloyed rapidly solidified layer comprised mainly g Fe and metastable HCP e phase. In the case of Si electrode (cathode), g Fe with a large amount of solute silicon atoms, metastable εphase and FeSiC (iron silicocarbide) with orthorhombic structure can be identified. On the other hand, the modified layer in the case of Al electrode (cathode) consisted of γ phase, Fe3C (cementite), metastable εphase and nonequilibrium κphases (AlFe3Cx) with fcc structure.
Moreover, the alloyed surface modification layer possessed superior corrosion-resistance, especially the Si-doped layer. This can be attributed to the considerable amount of solute Si. Microhardness test results show that the hardness distribution tended to increase from the base material to the EDMed surface and then reached an ultimate value ranging from Hv1300 to 1800. In addition, the hardness of alloyed layer exhibited a higher hardness.
中文摘要……………………………………………………Ⅰ
英文摘要……………………………………………………Ⅲ
總目錄………………………………………………………Ⅴ
圖表目錄……………………………………………………Ⅷ

第一章 前言…………………………………………1

第二章 文獻回顧……………………………………3
2-1 放電加工……………………………………………3
2-1-1放電加工之簡介………………………………………3
2-1-2影響放電加工因素……………………………………3
2-2 放電加工之合金化原理……………………………5
2-3 鑄鐵之凝固…………………………………………7
2-3-1冷卻速度對鑄鐵凝固組織的影響……………………7
2-3-2急速凝固之鑄鐵凝固組織研究………………………8
2-4 Al及Si對球墨鑄鐵之影響……………………………9
2-4-1 Si對球墨鑄鐵之影響…………………………9
2-4-2 Al對球墨鑄鐵之影響………………………………10
第三章 實驗方法……………………………………19
3-1 試料及電極材料準備………………………………19
3-2 放電加工之電極效應實驗……………………………19
3-3 顯微組織觀察及成分分析……………………………20
3-4 冷卻速率之量測……………………………………21
3-5 急速凝固層之硬度測試………………………………21
3-6 腐蝕測試……………………………………………22

第四章 實驗結果……………………………………28
4-1 放電加工特性探討…………………………………28
4-1-1 pulse duration對急速凝固層厚度的影響……28
4-1-2 duty factor對急速凝固層厚度的影響…………29
4-1-3 pulse duration及極性對電極材料移除率之影響29
4-1-4 duty factor及極性對電極材料移除率之影響…30
4-1-5電極極性對急速凝固層之成份影響………………30
4-2 急速凝固層之組織觀察及分析……………………30
4-2-1急速凝固層之組織觀察(OM及SEM觀察)………31
4-2-2成份分析…………………………………………32
4-2-3 結構分析(X-ray解析)……………………………34
4-3冷卻速率之量測………………………………………35
4-4 急速凝固層之特性…………………………………35
4-4-1腐蝕液測試…………………………………………35
4-4-2 硬度測試……………………………………………36

第五章 討論………………………………………73
5-1不同電極之放電參數對急速凝固層之影響…………73
5-1-1不同電極材料之脈衝時間對急速凝固層之影響…73
5-1-2不同電極材料之Duty factor 對急速凝固層之影響…………………………73
5-2 急速凝固層之組織探討……………………………74
5-3 影響急速凝固層硬度之因素………………………75
5-3-1組織細化……………………………………………75
5-3-2合金元素之固溶強化………………………………76
5-3-3析出強化……………………………………………76
第六章 結論…………………………………………81
參考文獻……………………………………………………82
1. 倉藤尚雄,鳳誠三郎,“放電加工”,復漢書局,第1~7頁,1990 。
2. R. Snoeys, F. Stalens and W. Dekeyser, “Current Trends in Non-Conventional Material Removal Processes”, Vol. 35/2, pp. 467-492, 1986.
3. D. I. Pantelis, N. M. Vaxevanidis, A. E. Houndri, P. Dumas and M. Jeandin, “Investigation into Application of Electro Discharge Machining as Steel Surface Modification Technique”, Surface Engineering, Vol. 14, No. 1, pp. 55-61, 1998.
4. O. A. Abu Zeid, “On the Effect of electro discharge Machining Parameters on the Fatigue Life of AISI D6 Tool Steel”, Journal Materials Processing Technology, Vol. 68, pp. 27-32, 1997.
5. N. Mohri, N. Saito, Y. Tsunekawa, “Metal Surface Modification by Electrical Discharge Machining with Composite Electrode”, Toyata Technological Institute, Annals of the CIRP, Vol. 42, pp. 219-222, 1993.
6. H. T. Angus, “Cast Iron Physical and Engineering Properties”, Butterworths, London, chapter 1, 1976.
7. 黃振賢,“金屬熱處理”,文京圖書有限公司,第433頁,1998。
8. 蔡澤高,劉以寬,王承忠及鄭文龍編著,“金屬磨耗與斷裂”,上海交通大學出版社,第58-67頁,1985。
9. K. Horio, T. Kasai and A. Kobayashi, “A Study on Laser-Enhanced Plating”, Annals of the CIRP, Vol. 40/1, pp. 195-198, 1991.
10. D. A. Porter, “Phase Transformation in Metals and Alloys”, chapter 4, 1981, Reprint 1984.
11. M. C. Flemings , “Solidification Progressing”, McGraw-Hill, New York, 1974.
12. P. R. Beeley, et al., “British Foundryman”, pp. 289-296, 1985.
13. W. Cheng, I. Finnie, M. Gremaud and M. B. Prime, “Measurement of Near Surface Residual Stresses Using Electric Discharge Wire Machining”, Transaction of the ASME Journal of Engineering Materials and Technology, Vol. 116, pp. 1-7, 1994.
14. 葉麗雅,“放電加工鑽孔法量測殘留之應力研究”,成功大學機械工程研究所碩士論文,1995。
15. 黃錦鐘,“放電加工”,高立圖書有限公司,台北,第一冊,第一章,第1-5頁,1998。
16. M. Bayramoglu and A. W. Duffill, “Manufacturing linear and circular contours using CNC EDM frame type tools”, Institute Journal of Tools Manufacturing, Vol. 35, No. 8, pp. 1125-1136.
17. R. Karthikeyan, P. R. Lakshmi Narayanan and R. S. Naagarazan, “Mathematical modeling for electric discharge machining of aluminum-silicon carbide particulate composites”, Journal materials Processing Technology, Vol. 87, pp. 59-63, 1999.
18. R. S. Naagarazan, “Mathematical modeling for electric discharge machining of aluminum-silicon carbide particulate composites”, Journal Materials Processing Technology, Vol. 87, pp. 59-63, 1999.
19. J. C. Rebelo, A. Morao Dias, D. Kermer and J. L. Lebrun, “Influence of EDM pulse energy on the surface integrity of martensitic steels”, Journal Materials Processing Technology, Vol. 84, pp. 90-96, 1998.
20. M. Motoki and K. Hashiguchi, “Energy distribution at the gap in electric discharge machining”, Annals of the CIRP, Vol. 14, pp. 485-489, 1967.
21. C. P. Tabrett, “The electro-discharge machining surfaces of high-chromium white irons”, Journal of Materials Science Letters, Vol. 15, pp. 1792-1794, 1996.
22. T. T. Wong and G. Y. Liang, “Formation and Crystallization of Amorphous Structure in the Laser-Cladding Plasma-Sprayed Coating of Al-Si Alloy”, Materials Characterization, Vol. 38, pp. 85-89, 1997.
23. A. Gangadhar, M. S. Shunmugam and P. K. Philip, “ Surface modification in electrodischarge processing with a powder compact tool electrode”, Wear, Vol. 143, pp. 45-55, 1991.
24. 倉藤尚雄,鳳誠三郎,“放電加工”,復漢書局,第23-37頁,1990 。
25. 董光雄, “放電加工”,復文書局,台南市,1994。
26. 王春祺,“鑄鐵孕育理論與實踐”,天津大學出版社,第51-121頁,1911。
27. H. Laplanche, “The Maurer Diagram, it’s Errors and Evolution”, Met Constr. Mec. , Vol. 98, No. 9, pp. 629-635, 1966.
28. M. J. Fleetwood, “Rapid Solidification Process”, Metals and Materials, Janpan, pp. 14-20, 1987.
29. N. J. Gran, “Rapid solidification technology: Particulate Production and Consolidation”, Industrial Materials Science and Engineering, Edited by L. E. Murr, published by Marcel Dekker, New York, pp. 243-272, 1984.
30. P. H. Shingu, K. Kobayashi and O. zakiR, “An amorphous phase in a splat-cooled Fe—3.8wt.﹪C alloy”, Scripta Metallurgy, Vol. 8, pp. 1317-1320, 1974.
31. B. Q. Li, “Producing thin strip by thin-roller casting part I: Process aspects and quality issues”, Jom. , No. 5, pp. 29-33, 1995.
32. Ko-Ho Yang, Min-Hsiung Hon and Kuo-Chang Su, “A study on the structural characterization rapid solidified spheroidal graphite cast irons”, Graduate school of Mineral, Metallurgy and Materials Science National Cheng Kung University, pp. 95, 1990.
33. R. C. Ruhl and M. Cohen, “A new metastable HCP phase in the Iron-Corbon system”, Acta Metallurgy, Vol. 15, pp. 159-160, 1967.
34. R. C. Ruhl and M. Cohen, “Splat quenching of Iron-Corbon alloys”, Transactions AIME, Vol. 245, pp. 241-251, 1969.
35. T. Minemura, A. Inoue, Y. Kojima and T. Masumoto, “Nonequilibrium Austenite in Melt-quenched Fe-C-X(X=Cr, Mo, W, Al or Si)Ternary Alloys”, Proceedings of the Fourth International Conference on Rapidly Quenched Metals, Sendai, Japan, Aug.24-28, 1981. Edited by T. Masumoto and K. Suzuki, published by the Japan Institute of Metals, pp. 1501-1504, 1982.
36. K. Yang, M. H. Hon and K. C. Su, “A Nonequilibrium chi -Phase in a Rapidly Quenched Fe--3 wt.% C--5 wt.% Si Spheroidal Graphite Cast Iron”, Scripta Metallurgy Master, Vol. 24, No.5, pp. 953-957, 1990.
37. H. Nakae, T. Kanno and B. Y. Kim, “Influence of lead and calcium on graphite morphology in cast iron”, The Second Asian Foundry Congress, Kitakyushu, pp. 24-25, Oct. 1994.
38. J. Liu and H. Liag, “The Study of Laser Alloying on Grey Cast Iron Surface With Silicon”, Transactions of Metal Heat Treatment, Vol. 13, No.4, pp. 19-24, 1992.
39. K. Ogi, R. Shimizu, Y. Ono and N. Murai, “Behavior of Alloying Elements and Formation of Graphite During Eutectic Growth of High Chromium Cast Iron”, Physical Metallurgy of Cast Iron(IV), Tokyo, Japan, Chapter 4-6, Sept.1989.
40. J. Pelleg, “Influence of silicon on ductile cast iron”, Modern Casting, Vol. 5, pp. 108-116, 1965.
41. Y. Nakaano, “Magnetic properties of cast iron.”, Imono, Vol. 51, No. 6, pp. 315-321, 1978.
42. J. F Janowak, R. B. Gundlach, G. T. Eldis and K. Rohrig, “Technical advances in cast iron metallurgy”, Journal of Institute Cast Metal, Vol. 6, No. 4, pp. 28-42, 1981.
43. U. Ekpoom and R. W. Heine, “Metallurgical processing variables affecting the solidification of malleable base white cast iron ”, AFS Transactions, Vol. 89, pp. 1-14, 1981.
44. L. Brewer, J. Chipman and S. G. Chang, “Metals Handbook ”, 8thed, Vol. 8, pp. 413-414, 1973.
45. F. D. Geib and R. A. Rapp, “Processing and farbrication of advanced materials for high temperature applications”, edited by V. A. Ravi and T. S. Svivantsan, TMS, Warrendale, PA., pp. 347, 1992.
46. G. Culberton and C. S. Kortoricch, “Development of iron aluminides”, AFWAL-TR-85-4155(Air force Wright aeronautical laboratories, Wright-Patterson Air Force Base, OH, 1987.).
47. J. Scott and M. S. Thesis, “Rensselaer polytechnic institute”, 1992.
48. J. H. Devan, “Oxidation of high-temperature intermetallics ”, Edited by T. Grobstein and J. Doychak, pp. 107, 1989.
49. G. Petzow, “Metallographic etching”, Published by ASM, pp. 64-65, 1976.
50. George F. Vander Voort, “Metallography principles and practice”, published and reprinted by Central Book Company, Taipei, Taiwan, pp. 631-657, 1984.
51. R. C. Ruhl, “Cooling rates in splat cooling ”, Materials Science and Engineering, Vol. 1, pp. 313-320., 1967.
52. F. Sommer and J. Wachter, “Determination of the cooling rate for a rotating-wing splat quenching equipment”, International Journal of Rapid Solidification, Vol. 3, pp. 223-236, 1988.
53. M. H. Burden and H. Jones, “Determination of cooling rate in splat-cooling from scale of microstructure”, Journal of Japan Institute of Metals, Vol. 98, pp. 249-252, 1970.
54. A. Suzuki, T. Suzuki, Y. Nagaoka and Y. Iwata, “On secondary dendrite arm spacing in conventional carbon steels with different carbon content”, Journal of Japan Institute of Metals, Vol. 32, pp. 1301-1305, 1968.
55. K. Kawakami, J. Inagaki, S. Nishioka, H. Sato and M. Ohtsuki, “Research on twin roll casting process”, Near Net Shape Casting, published by the Japan Iron and Steel Institute, pp. 71-80, 1987.
56. 蔡德昌,“球狀石墨鑄鐵及矽晶第二相對模具用共晶合金材料之放電加工特性探討”,成功大學材料科學及工程學系進行中之研究,2002。
57. J. E. Greene and J. L. Guerrero-Alvarez, “Electro-erosion of metal surfaces”, Metallurgical Transactions, Vol. 5, pp. 695-706, 1974.
58. E. Hornbogen, “Phase-structure and microstructure of rapidly quenched alloys”, Rapidly Quenched Metals, Proceedings of the fifth international conference on rapidly quenched metal, Wurzburg, Germany, Sep. 3-7, pp. 785-796, 1984.
59. A. Inoue, T. Minemura, A Kitamura and T. Masumoto, “Nonequilibrium phases in rapidly quenched Fe-Al-C ternary alloys”, Metallurgical Transactions A, Vol. 12, pp. 1041-1046, June 1981.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊