跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連曼君
研究生(外文):Man-Chun Lien
論文名稱:以磁控濺鍍法在聚亞醯胺基材上沈積金屬鍍層之性質研究
論文名稱(外文):The Characteristic Studies of Metal Films Deposited on Polyimide by Magnetron RF Sputtering Techniques
指導教授:李世欽李世欽引用關係
指導教授(外文):Shih-Chin Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:132
中文關鍵詞:電阻率二次離子質譜儀原子力顯微鏡附著力銅膜聚亞醯胺拉伸試驗掃瞄式電子顯微鏡
外文關鍵詞:AFMSEMpull off testPolyimideCuSIMSresistivityadhesion
相關次數:
  • 被引用被引用:16
  • 點閱點閱:1122
  • 評分評分:
  • 下載下載:281
  • 收藏至我的研究室書目清單書目收藏:1
由於全球電子產業之快速發展,為因應產品輕、薄、短、小的趨勢,具有可撓性、折疊式效果的軟質印刷電路板(FPC),於微電子元件之應用愈趨重要,進而帶動軟質印刷電路板市場的成長。
聚亞醯胺(Polyimide, PI)具有優異的耐熱性、抗氧化性、化學穩定性、低介電常數(dielectric constant),加上有良好的機械性質,及可撓曲等特性,因此廣泛應用於IC電子產業。而決定Cu/PI可靠度與耐久性的因素在於Cu膜與PI基板之接著情形。
本研究為改善銅膜與Polyimide之附著強度,添加反應性中介層(包括ZnO、Cr及Ti)於銅膜及PI基板之間。利用RF磁控濺鍍的方式沈積中介層及銅膜於PI上,並探討實驗參數:(1)銅膜沈積功率;(2)中介層種類;(3)中介層沈積功率及(4)中介層厚度對Cu/interlayer/PI system之電性、附著力、鍍層表面型態、鍍層結構的影響。
SEM分析顯示在銅膜沈積功率300W時,銅膜表面有較多的核團及大粒子。在相同之薄膜厚度下,銅膜的電阻率在沈積功率200W時最小,且銅膜之附著性在沈積功率200W時最佳。在相同沈積功率下,銅膜之電阻率隨著銅膜厚度的增加而上升,而附著力會隨薄膜厚度的增加而降低。
Due to the increasing development of electronic industries, small chip size and flexible performance become more important in microelectronic applications. Polyimdes have many advantages, such as high temperature stability, oxidation and high chemical resistance, low dielectric constant, and excellent mechanical properties. Therefore, polyimdes have been widely used as substrates of flexible printed circuits and TAB (Tape Automatic Bonding).
The effects of improvement of copper film adhesion prepared on polyimide film substrate were investigated in this article. We deposited the reactive metal layer (including zinc oxide, chromium and titanium) on the polyimide surface before deposited copper films. The copper films and interlayer films on polyimide were prepared by magnetron RF sputtering techniques under 3×10 torr.
The structure at the interface between the copper films and polyimide substrates were analyzed by scanning electron microscopy (SEM). The surface morphology and roughness were observed by AFM (Atomic Force Microscope). The diffusion conditions between Cu/interlayer/polyimide interface were analyzed by SIMS (Secondary Ion Mass Spectrometer). The resistivity of the copper films were measured by four point probe. And the adhesion of copper films was evaluated by means of a pull-off test.
SEM analysis showed that there were more clusters or large particles on the copper surface under higher RF power density. The resistivity was increasing with thickness of the copper films under the same power density. When the power density was 200W, it showed the highest adhesion strength cause the re-sputtering happened. And with the increased thickness of the interlayers, the decreased adhesion strength.
總目錄

中文摘要........................................Ⅰ
英文摘要........................................Ⅱ
總目錄..........................................Ⅲ
圖目錄..........................................Ⅶ
表目錄..........................................Ⅹ

第一章 緒論...................................1
1-1 簡介........................................1
1-2 動機與目的..................................3

第二章 文獻回顧與理論基礎........................6
2-1 電漿理論基礎................................6
2-1-1 電漿概述..................................6
2-1-2 輝光放電原理..............................9
2-2 物理氣相蒸鍍...............................13
2-2-1 濺鍍理論.................................14
2-2-2 射頻濺鍍原理.............................17
2-2-3 磁控濺鍍原理.............................20
2-2-4 濺鍍率...................................22
2-3 薄膜沈積成核原理...........................23
2-3-1 薄膜成核成長理論.........................23
2-3-2 金屬在聚合物表面上的成核與成長...........27
2-4 附著力理論.................................28
2-4-1 薄膜的附著類型...........................28
2-4-2 附著力的性質.............................31
2-4-3 影響附著力的因素.........................32
2-4-4 PI上銅膜之附著力.........................34
2-4-5 附著力之文獻探討.........................35
2-4-6 Polyimide與金屬間的介面..................36
2-5 Polyimide之特性............................38

第三章 實驗方法與步驟...........................42
3-1 實驗規劃...................................42
3-1-1 田口式實驗設法...........................42
3-1-2 田口式實驗參數...........................43
3-1-3 實驗條件.................................44
3-2 實驗材料...................................45
3-2-1 基板.....................................45
3-2-2 靶材.....................................45
3-3 實驗流程...................................46
3-3-1 試片製備流程圖...........................46
3-3-2 試片量測.................................47
3-3-3 試片前處理...............................48
3-3-4 濺鍍設備.................................48
3-3-5 濺鍍機操作步驟...........................49
3-4 試片分析...................................50
3-4-1 沈積速率量測.............................50
3-4-2 電性量測.................................51
3-4-3 SEM表面型態觀察..........................52
3-4-4 低掠角X光繞射分析........................52
3-4-5 二次離子質譜儀縱深分析...................52
3-4-6 原子力顯微鏡分析.........................53
3-4-7 附著力量測...............................53

第四章 結果與討論...............................58
4-1 沈積速率...................................58
4-2 表面型態及截面分析.........................60
4-2-1 SEM表面型態觀察..........................60
4-2-2 截面型態之分析...........................63
4-2-3 AFM表面型態分析..........................65
4-3 XRD繞射分析................................71
4-4 二次離子質譜儀分析.........................78
4-5 電性分析...................................84
4-5-1 無中介層銅膜沈積功率對電阻率之影響.......89
4-5-2 中介層參數對銅膜電阻率之影響.............93
4-6 附著力分析................................102
4-6-1 無中介層銅膜沈積功率對附著力之影響......108
4-6-2 中介層參數對銅膜附著力之影響............112

第五章 結論....................................125
參考文獻.......................................127

圖目錄
圖2-1 電漿產生示意圖............................8
圖2-2 輝光放電示意圖...........................10
圖2-3 陰電極板附近的發光區及暗區之分佈.........10
圖2-4 濺擊靶材表面所產生之交互作用.............14
圖2-5 兩種鍍層的結構模型:(a)Movchan和Demchisin所提出(b)Thornton 所提出......................15
圖2-6 RF濺鍍系統示意圖.........................19
圖2-7 磁控濺射之示意圖.........................20
圖2-8 薄膜成核成長機構發生順序示意圖...........25
圖2-9 三種表面結晶成長模型.....................26
圖2-10 金屬原子沈積在聚合物表面過程之模擬......27
圖2-11 附著類型示意圖:(a)簡單附著(b)擴散附著(c)通過中間層附著(d)通過宏觀效應附著........30
圖2-12 表面平均粗糙度(Ra)對應電漿處理時間關係圖.......35
圖2-13 Cu與Cu(Ti)之Adhesion strength對應電漿處理時間關係圖.......35
圖2-14 polyimde之化學結構......................38
圖2-15 Polyimide之應用示意圖...................39
圖3-1 銅膜/中介層/Polyimide之結構示意圖........44
圖3-2 試片製備流程圖...........................46
圖3-3 試片量測示意圖...........................47
圖3-4 α-step量測示意圖........................50
圖3-5 四點探針示意圖...........................51
圖3-6 試棒及定位銷尺寸.........................55
圖3-7 治具尺寸示意圖...........................56
圖3-8 試棒與試片接著示意圖.....................56
圖3-9 拉伸試驗治具之實體.......................57
圖3-10 拉伸試驗試棒............................57
圖4-1 沉積功率與沉積速率之關係圖...............59
圖4-2 銅膜表面型態之低倍率SEM相片..............61
圖4-3 銅膜表面型態高倍率之SEM相片..............62
圖4-4 Cu/PI之SEM截面觀察.......................64
圖4-5 不同銅膜沈積功率之AFM分析圖..............66
圖4-6 銅膜沈積功率與表面粗糙度的關係...........67
圖4-7 銅膜縱剖面粗糙分析.......................68
圖4-8 田口式L9表中介層參數對應表面粗糙度的關係.70
圖4-9 無中介層銅膜不同沈積功率之XRD繞射圖......72
圖4-10 無中介層銅膜不同沈積功率對Cu(111)peak之FWHM值關係圖....................................73
圖4-11 銅膜沈積功率對應Cu(111)peak之FWHM值之關係.....74
圖4-12 中介層厚度對應Cu(111)peak之FWHM值之關係.75
圖4-13 中介層沈積功率對應Cu(111)peak之FWHM值之關係.....76
圖4-14 中介層材質對應Cu(111)peak之FWHM值之關係...77
圖4-15 Cu/PI之SIMS分析.........................80
圖4-16 Cu/ZnO/PI之SIMS分析.....................81
圖4-17 Cu/Cr/PI之SIMS分析......................82
圖4-18 Cu/Ti/PI之SIMS分析......................83
圖4-19 無中介層純銅總厚度1μm、2μm及5μm之沈積功率對電阻率之關係圖.............................92
圖4-20 銅膜沈積功率對電阻率的影響..............94
圖4-21 中介層厚度對銅膜電阻率的影響............96
圖4-22 中介層沈積功率對銅膜電阻率的影響........98
圖4-23 中介層材質對銅膜電阻率之影響關係.......100
圖4-24 無中介層銅膜總厚度1μm、2μm及5μm之沈積功率對附著力之影響.................................110
圖4-25 銅膜厚度2μm(200W)之拉伸試驗破斷面...111
圖4-26 中介層材質對銅膜附著力之影響...........114
圖4-27 銅膜不同中介層之破裂面(續)...........115
圖4-27 銅膜不同中介層之破裂面.................116
圖4-28 中介層沈積功率對銅膜附著力的影響.......118
圖4-29 中介層厚度對銅膜附著力的影響...........120
圖4-30 銅膜沈積功率對銅膜附著力的影響.........122
圖4-31 Epoxy黏附於銅膜表面上之示意圖..........124

表目錄
表3-1 因素水準配置表...........................43
表3-2 L9(34)直交表...........................43
表3-3 靶材種類詳表.............................45
表4-1 銅膜之沉積速率...........................59
表4-2 田口式L9表中介層表面粗糙度...............69
表4-3 田口式L9表中介層參數因子對表面粗糙度反應表.....69
表4-4 中介層參數對應Cu(111)peak之FWHM值之因子反應表..............................................74
表4-5 總厚度1μm無中介層銅膜電阻率之實驗結果與誤差分析..........................................85
表4-6 總厚度2μm無中介層銅膜電阻率之實驗結果與誤差分析..........................................85
表4-7 總厚度5μm無中介層銅膜電阻率之實驗結果與誤差分析..........................................86
表4-8 總厚度1μm L9電阻率之實驗結果與誤差分析..............................................86
表4-9 總厚度2μm L9電阻率之實驗結果與誤差分析..............................................87
表4-10 總厚度5μm L9電阻率之實驗結果與誤差分析.87
表4-11 總厚度1μm L9電阻率參數之因子反應表.....88
表4-12 總厚度2μm L9電阻率參數之因子反應表.....88
表4-13 總厚度5μm電阻率參數之因子反應表........88
表4-14 總厚度1μm無中介層銅膜附著力之實驗結果與誤差分析.................104
表4-15 總厚度2μm無中介層銅膜附著力之實驗結果與誤差分析.........................................104
表4-16 總厚度5μm無中介層銅膜附著力之實驗結果與誤差分析.........................................105
表4-17 總厚度1μm L9附著力之實驗結果與誤差分析.............................................105
表4-18 總厚度2μm L9附著力之實驗結果與誤差分析.............................................106
表4-19 總厚度5μm L9附著力之實驗結果與誤差分析.............................................106
表4-20 總厚度1μm附著力參數之因子反應表.......107
表4-21 總厚度2μm附著力參數之因子反應表.......107
表4-22 總厚度5μm附著力參數之因子反應表.......107
[1] 邱以泰,胡應強,陶惟翰,林伯耕,“高密度印刷電路板感光性介電材料之探討”, 電子構裝技術特刊, 工業材料雜誌, 175(2001), pp.129-130.
[2] US Patent 6060175,(2000).
[3] US Patent 6042929,(2000).
[4] T.R. Bergstresser, et al., Flexcon91, Sunnyvale, CA,(1997).
[5] A. Weber, Journal of Electrochemistry Society, 144, 1131(1997).
[6] US Patent 5389446,(1995).
[7] D. J. Mckenny and D. K. Numakura, Cricuitree, September, 87(2000).
[8] D. Numakura, IPC 5th Annual National Conference on Flexible Circuits, June(1999).
[9] D. Numakura, HDI Expo, August(1999).
[10] T.G. Chung, Y.H.Kim Jin Yu, Journal of Adhesion Science Technology, 8(1994), pp.41.
[11] P. Bodo, J.E. Sundgren, Journal of Vacuum Science Technology, A6(1988), pp.2396.
[12] R. Flitsch, D.Y. shih, Journal of Vacuum Science Technology, A8(1990), pp.2376.
[13] D.Y. Shih, J. Paraszczak, N. Klymko, R. Flitsch, S. Nuues, J. Lewis, C. Yand, J. Cafeldo, R. McGouey, W. Graham, R. Serino, E. Galligan, Journal of Vacuum Science Technology, A7(1987), pp.1402.
[14] J.L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsed, R.A. Pollak, Journal of Vacuum Science Technology, A4(1986), pp.1046.
[15] T.S. Oh, S.P. Kowalczyk, D.J. Hunt, J. Kim, Journal of Adhesion Science Technology, 4(1990), pp.119.
[16] D.L. Pappas, J.J. Cuomo, Journal of Vacuum Science Technology, A9(1991), pp.2704.
[17] Brian Chapman, Glow Discharge Processes, John Wiley and Sons,
New York,(1980).
[18] 王福貞,聞立時,“表面沈積技術”,Vol.1,(1984), pp.49-63.
[19] J.L. Vossen and W. Ken, Thin Film Process, PartⅡ, Academic Press,(1978).
[20] 莊達人,“VLSI製造技術”, 高立圖書有限公司,(2000), pp.147.
[21] 王志良, 國立成功大學 材料科學及工程學系,“濺鍍硼化鈦與氮硼化鈦擴散阻礙層特性之研究”, (1999).
[22] S.M. Rossnagel et al.,“Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A, (1982).
[23] J.A. Thomton,“Influence of Apparatus Geometry and Deposition Condition on the Structure and Topography of Thick Sputtered Coatings”, Journal of Vacuum Science Technology, 11(4), (1973), pp.666-670.
[24] J.A. Thomton,“Influence of Substrate Temperature and Deposition Rate on Structure of Thick Sputtered Cu Coatings”, Journal of Vacuum Science Technology, 12(4), (1975), pp.830.
[25] A.Grill, “Cold Plasma in Material Fabrication” , chap.2, (1993).

[26] M.K. Lee and H.S. Kang,“Characteristics of TiN Film Deposited on Stellite Using Reactive Magnetron Sputter Ion Plating”, Journal of Material Research, 12(9), (1997),(2000) pp.1400-2393
[27] 林光隆, 國立成功大學 材料科學及工程學系,“材料表面工程講義”, chap.7, (2001).
[28] John L. Vossen and Werner Kerm,“Thin Film Process”, Academic Process, (1999), pp.134.
[29] 誠真企業有限公司, “真空濺射鍍膜”, pp.4-10.
[30] 張益新, 國立成功大學 材料科學及工程學系, 碩士論文,“銅製程矽晶片上ZnO薄膜合成之研究”, (1999), pp.17.
[31] M. Harsdoff,“The influence of charge point defects and contamination of substrate surfaces on nucleation”, Thin Solid Films, 116(1984), pp.55-74.
[32] Venables,“Nucleation and Growth of Thin Films”, Rep. Prog. Phys., 47(1984), pp.399-459.
[33] V. Zaporojtchenko, T. Strunskus, K. Behnke, C. Von Bechtolsheim, M. Kiene and F. Faupel,“Metal/polymer interfaces with designed morphologies”, Journal of Adhesion Science Technology, Vol.14, No.3(2000), pp.467-490.
[34] 曲喜新, 過璧君, 薄膜物理, 電子工業出版社, Chap2.
[35] Satoru lwamori, Vacuum, Vol.51(1998), pp.615-618.
[36] Y.H.Kim,et al., J.Adhesion Sci. Technol., (1987), pp1-331.
[37] L.P.Buchwalter, J.Adhesion Sci.Technol. ,(1990), pp4-697.
[38] C.Girardeaux, et al, J electron Spectros. Related Phenomena, 74(1995), pp.57.
[39] E. Kondoh,“Material characterization of Cu(Ti)-polyimide thin film stacks”, Thin Solid Films 359(2000), pp.255-260.
[40] N.J. Chou, D.W. Dong, J. Kim and A.C. Liu, J. Electrochem. Soc., 131(1984), pp.2335.
[41] D.S. Dunn and J.L. Grant, Journal of Vacuum Science Technology, A7(1989), pp.253.
[42] R. Haight, R.C. White, B.D. Silverman and P.S. Ho, Journal of Vacuum Science Technology, A6(1988), pp.2188.
[43] J. Kim, S.P. Kowalczyk, Y.H. Kim, N.J. Chou and T.S. Oh, Mat. Res. Soc. Symp. Proc., 167(1990), pp.137.
[44] F.S. Ohuchi and S.C. Freilich, Journal of Vacuum Science Technology, A4(1986), pp.1039;Polymer, 28(1987), pp.1908.
[45] Girardeaux, C. Druet, E. Demoncy, P. Delamar, M.,“The polyimide (PMDA/ODA)-titanium interface. Part 1. Untreated PMDA/ODA: An XPS, AES, AFM and Raman study”, Vol.70(1994), pp.11-21.
[46] Satoru lwamori, Vacuum,Vol.51(1998), pp.615-618.
[47] 李建輝,“工業材料”, 第100期, (1995), pp.38-41.
[48] 林金雀,“化工資訊”, (1998), pp29-34.
[49] 李輝煌,“田口方法-品質設計的原理與實務”, (2000).
[50] 鍾清章,“田口式品質工程導論”, (1996).
[51] 劉克祺,“實驗設計與田口式品質工程”, (1994).
[52] Shedden, B.A.; Samandi, M.; Window, “Influence of substrate bias on the microstructure of sputtered Al-Zn alloy coatings”,Surface and Coatings Technology Volume: 68-69, December, 1994, pp.332-338
[53] H. Kashani,“The signification of parallel electric field on the preferred orientation and surface morphology of ZnO thin films”, Journal of Material Science Letters, 18(1999), pp.1043-1045.
[54] 吳南均,丁信智,“高等X光學”, pp.172-173,(2001).
[55] 汪建民,“材料分析”,中國材料科學學會,第十四章.
[56] Z.M. Guan, G.X. Liu, D.B. Williams and M. R. Notis,“Diffusion Induced Grain Boundary Migration and Associated Concentration Profiles in a Cu-Zn Alloy”, Acta. Metall., vol 37(1989), pp.519-527.
[57] Mayumi Takeyama, Astsushi Noya, Kourichirou Sakanishi, Hikaru Seki and Katsurtaka Sasaki,“Solid-Phase Reaction of Diffusion Barriers of Ti and TiN to Copper Layer on SiO2”Jpn. J. Appl. Phys., Vol. 35(1996)Pt. 1, No. 7, pp.4027-4033.
[58] M. Bruggemann, A. Masten, P. Wiβmann,“Electrical and structural properties of copper films annealed on Si(111)”, Thin Solid Films 406(2002), pp.294-298.
[59] D. Dayal, H.U. Finzel, P. Wiβmann, in:P. Wiβmann (Ed.), Thin Metal Films and Gas Chemisorption, Elsevier Publ, Amsterdam, (1987), pp.53.
[60] H.M. Choi, S.K. Choi, O. Anderson, K. Bange, “Influence of film density on residual stress and resistivity for Cu thin films deposited by bias sputtering”, Thin Solid Films 358(2000), pp.202-205.
[61] H.K. Pulker, H. Maser, Thin Solid Films 59(1979), pp.65.
[62] Akinori Ebe, Eiji Takahashi, Naoto Kuratani, Satoshi Nishiyama, Osamu Imai, Kiyoshi Ogata, Yuichi Setsuhara, Shoji Miyake, “Interface structure between polyimide film substrate and copper film prepared by ion beam and vapor deposition(IVD) method”, Nuclear Instruments and Methods in Physics Research B 121(1997), pp.207-211.
[63] I.S. Park, E.C. Ahn, Jin Yu, H.Y. Lee,“Cohesive failure of the Cu/polyimide system”, Materials Science and Engineering A282(2000), pp.137-144.
[64] T. Lux,“Adhesion of copper on polyimide deposited by arc-enhanced deposition”, Surface Coating Technology 133-134(2000), pp.425-429.
[65] D.L. Smith, Thin-Film Deposition Principles & Practice, McGraw-Hill, Inc.(1995).
[66] Satoru Iwamori, Takehiro Miyashita, Shin Fukuda, Shouhei Nozaki, Kazufuyu Sudoh and Nobuhiro Fukuda,“Effect of an interfacial layer on adhesion strength deterioration between a copper thin film and polyimide substrates”, Vacuum 51(1998), pp.615-618.
[67] Y.B. Park, I.S. Park, Jin Yu, “Interfacial fracture energy measurements in the Cu/Cr/Polyimide system”, Materials Science Engineering A266(1999), pp.261-266.
[68] T.S. Oh, S.P. Kowalczyk, D.J. Hunt, J. Kim, Adhesion Science Technology 4(1990), pp.119.
[69] D.L. Pappas, J.J. Cuomo, Journal of Vacuum Science Technology A9(1991), pp.2704.
[70] E.C. Ahn, J. Yu, I.S. Park, Journal of Material Science : Material Electron 7(1996), pp.175.
[71] A.C. Callegari, H.M. Clearfield, B.K. Furman, T.G. Graham, D. Neugroschi, S. Purushothaman, Journal of Vacuum Science Technology A12(1994), pp.185.
[72] 吳皇輝, 國立成功大學 化學工程研究所,“直流電漿化學氣相沉積法低溫成長鑽石薄膜”(1993), pp.59.
[73] K.S. Sengupta, H.K. Birnbaum, in: K.L. Mittal(Ed.), Metallized Plastics 2, Plenum Press, New York,(1991), pp.257.
[74] 董佳仁, 義守大學 材料科學與工程學系,“氧在介面的加入對鋁╱鉻薄膜與氧化銦錫玻璃結合強度的影響”(2000), pp.32.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top