跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 16:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾鴻欽
研究生(外文):Hung-Chin Chung
論文名稱:反應性磁控濺鍍鉭及氮化鉭基薄膜之微結構及其熱穩定性之研究
論文名稱(外文):Microstructure and Thermal Stability of RF-sputtered Ta and TaNx Thin Films
指導教授:劉全璞
指導教授(外文):Chuan-Pu Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:130
中文關鍵詞:擴散阻障層氮化鉭
外文關鍵詞:TaNdiffusion barrier
相關次數:
  • 被引用被引用:2
  • 點閱點閱:763
  • 評分評分:
  • 下載下載:178
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的在製作鉭(Ta)及氮化鉭(TaNx)薄膜並探討其材料特性,以應用於銅-矽晶基材間之擴散阻障層。利用反應性射頻磁控濺鍍製程,在固定氬氣(Ar)流量的氣氛下,將鉭(Ta)金屬薄膜沉積至(100) n-type矽晶基材,利用X光繞射分析(XRD)、掃描式電子顯微鏡(SEM)、電阻率量測及��-step膜厚量測,觀察基板偏壓(substrate Bias)變化對鉭(Ta)金屬薄膜之結構、電阻率(ρ)、及沉積速率的影響。這些結果發現在矽晶基材上會沉積出電阻率約200 μΩ-cm之介穩態正方體β-Ta,隨著Bias變化,β-Ta薄膜之電阻率呈一向下趨於平緩的曲線變化。此外由XRD可觀察到不同的Bias下,β-Ta薄膜顯微結構的變化,應是影響電阻率的主要原因之一。
確切掌握β-Ta薄膜製程以後,本研究進一步探討在不同氮氣/氬氣流量比例的氣氛下,將不同氮含量之鉭基(TaNx)薄膜沉積至矽晶基材上,薄膜沉積完畢後以掃描式電子顯微鏡觀察表面,X射線光電子能譜儀(XPS)分析薄膜表面的化學鍵結,穿透式電子顯微鏡(TEM)觀察微結構變化,再利用XRD觀察到在不同的氣體流量比下,將發生一連串的相轉變行為,依氮氣流量的增加,相的改變由複晶Ta轉變為非晶質Ta2N、複晶TaN及複晶Ta4N5,此外TaNx薄膜在電性上亦產生實質的變化。
接著探討由不同組成與結構設計之Ta-N薄膜,其在『Si/Ta-N/Cu』金屬化系統中高溫擴散阻障行為。所採用之結構如下:
Cu / Ta / Si 結構
Cu / Ta2N(RT.) / Si 結構
Cu / Ta2N(100℃) / Si 結構
Cu / Ta2N(200℃) / Si 結構
Cu / TaN(1%) / Si 結構
Cu / TaN(2%) / Si 結構
Cu / TaN(4%) / Si 結構
對試片分別在500、600、700及800℃下退火30分鐘,用四點探針量測片電阻變化,低掠角X光繞射分析(GIAXD)分析各鍍層相變化及反應物的成份,掃描式電子顯微鏡觀察銅膜表面型態,歐傑電子能譜(AES)縱深元素分析,藉以知道『Cu / Ta-N / Si』金屬化系統各層結構的變化。
比對GIAXD、SEM、AES的結果顯示上述幾種不同的結構在退火後有不同的行為,Cu / Ta / Si 結構與Cu / Ta2N(RT.) / Si 結構在800℃/30分鐘退火後片電阻值明顯上升,造成電阻上升的原因為高電阻相(Cu3Si,TaSi2)的生成及表面銅膜產生球化不連續所導致;Cu / TaN(4%) / Si 結構在800℃/30分鐘退火後片電阻值亦明顯上升,造成電阻上升的原因為表面銅膜產生球化不連續所導致;Cu / Ta2N(100℃) / Si 結構、Cu / Ta2N(200℃) / Si 結構與Cu / TaN(2%) / Si 結構在800℃/30分鐘退火後片電阻值僅些微上升,雖高電阻相已生成,但仍可觀察到有殘留部分的Cu膜,顯示阻障層仍能維持其熱穩定性;Cu / TaN(1%) / Si 結構800℃/30分鐘退火後片電阻值仍維持一定,推論Cu膜仍維持連續性且表面無高電阻相生成,顯示有較好之熱穩定性。
The objective of this dissertation is to study the material characteristics of sputtered Ta and TaNx thin films and the viability of employing them as the diffusion barrier between copper and silicon. On the first part, Ta films are deposited on n-type Si (100) substrates at a fixed argon flow. Phase identification of the deposited films is performed by X-ray diffraction (XRD). Tantalum surface morphology is inspected by scanning electron microscopy (SEM). Resistivity is measured by the four-point probe method (FPP). It is found that substrate bias (VBias) affects the film resistivity (ρ), structure and deposition rate. The results show that the as-sputtered Tantalum film is the tetragonal β-Ta phase with resistivity of 200 μΩ-cm, which decreases gradually as increasing bias varies. Moreover, the microstructure of β-Ta films from XRD, which, is one of the major reason affecting with various bias.
Subsequently, the TaNx films with different atomic ratio were attempted by various N2/Ar+N2 ratio during sputtering. The TaNx films are analyzed by using SEM for surface morphology, X-ray photoelectron spectroscopy (XPS) for chemical bonding states, transmission electron microscopy (TEM) for microstructure, and XRD for phase identification. Experimental results reveal that the phase transformation of TaNx films with increasing nitrogen flow rates is in the sequence of poly-Ta, amorphous Ta2N, poly-TaN, and poly-Ta4N5. Accordingly, the electrical properties of TaNx films vary with the resulting phase. In the study of the diffusion barrier properties of Ta-N thin films for Cu metallization in ULSI circuit devices. The multilayered structures, Cu / Ta / Si, Cu / Ta2N(RT.) / Si, Cu / Ta2N(100℃) / Si, Cu / Ta2N(200℃) / Si, Cu / TaN(1%) / Si, Cu / TaN(2%) / Si, and Cu / TaN(4%) / Si, are compared and annealed in the vacuum chamber at 500℃,600℃,700℃,and 800℃ for 30 min following sputtering. Sheet resistance for films at each temperature is then measured by FPP. The phase identification is performed by glancing angle X-ray diffraction (GIAXD). Copper surface morphology is inspected by SEM. Auger electron spectroscopy is used to evaluate the degree of the atomic inter-diffusion across the interface by compositional depth profile.
The results from GIAXD, SEM and AES analyses show that these structures exhibit different behaviors upon annealing. The sheet resistance of Cu / Ta / Si and Cu / Ta2N(RT.) / Si increases steeply after 800℃/ 30 min annealing. The resistance increase is due to the phases (Cu3Si, TaSi2) of high resistance formed and the spheroidization of copper film. The sheet resistance of Cu / TaN(4%) / Si also increases steeply after 800℃/ 30 min annealing, which is due to the spheroidization of copper film. Nevertheless, the sheet resistance of Cu / Ta2N(100℃) / Si, Cu / Ta2N(200℃) / Si and Cu / TaN(2%) / Si only increases marginly upon annealing at 800℃ for 30 min, which is due to the presence of residual continuous Cu films. Finally, the sheet resistance of Cu / TaN(1%) / Si remains the same upon annealing at the same conditions, probably caused by the absence of the formation of both high-resistive phase and spheroidization of the Cu films, implying this structure has best thermal stability.
目錄
中文摘要............Ⅰ
英文摘要............Ⅲ
目錄................Ⅵ
表目錄..............Ⅹ
圖目錄..............XI

第一章、前言……………………………………………………………..1
第二章、文獻回顧……………………………………………………….4
2.1 IC發展概況與趨勢…………………………………………….….....4
2.2 內連接導線材料之選擇…………………………………………….6
2.3 銅導線製作技術………………………….…………………………8
2.3.1 物理氣相沉積(PVD)原理…………………………………….......9
2.3.1.1 電漿產生原理…………………………………………………...9
2.3.1.2 電漿產生源………………………………………..…………...10
2.3.1.3 薄膜沈積機制……………………………………….…………11
2.3.1.4 反應性濺鍍…………………………………………………….12
2.3.2 化學氣相沉積(CVD)原理……………………………………….12
2.3.3 電鍍法(Electroplating)…………………………………………...13
2.4 銅導線之鑲嵌製程…………….…………………………………..13
2.5 銅導線之擴散阻障層………………………………………...……14
2.5.1 擴散阻障層之要求與其種類……………………………………14
2.5.2 擴散阻障層之選擇………………………………………………16
2.6 Ta、TaNx之擴散阻障層研究………………………………………..18
2.7 實驗設計……………………………………………….……..……19
第三章、實驗步驟與分析方法…………………………………………33
3.1 實驗製程準備……………………………………………………...33
3.1.1實驗材料…………………………………………………………..33
3.1.2 實驗設備………………………………………………………....34
3.2 實驗流程…………………………………………………………...35
3.2.1 Ta薄膜製程之探討……………………………………………..35
3.2.2 Ta2N薄膜製程之探討……………………………………….…....36
3.2.3 TaNx薄膜製程之探討……………………………………….……36
3.2.4 Cu / TaNx / Si阻障系統製程之探討………………………..…….36
3.3 材料分析與量測技術……………………………………………...36
3.3.1薄膜厚度量測(α-Step)…………………………………………....37
3.3.2薄膜電性量測(四點探針,FPP)……….…………………………..37
3.3.3 粉末X光繞射儀(Powder XRD)……..…………………………..38
3.3.4 低掠角X光繞射儀(GIAXD)…………………………………….39
3.3.5 掃描式電子顯微鏡(SEM)…………………………………….…40
3.3.6 歐傑電子能譜儀(AES)……………..…………………………....40
3.3.7 X光光電子能譜儀(XPS)……………….………….……………..41
3.3.8 穿透式電子顯微鏡(TEM)…………………..…………………...42
第四章、結果與討論…………………………………………………....52
4.1 TaNx薄膜性質……………………………….………………….…..52
4.1.1 TaNx薄膜電性與基板偏壓的關係…………….……………..…..52
4.1.2 TaNx薄膜之結構分析………………………………………..…...53
4.1.3 TaNx薄膜之表面型態觀察…………………………………….…54
4.1.4 TaNx薄膜之X光光電子能譜分析(XPS)………………………...55
4.2 Ta薄膜性質………………….…………………….………………..56
4.2.1 Ta薄膜電性及沈積速率與基板偏壓的關係……………….…....56
4.2.2 Ta薄膜之結構分析…………………………………………….…57
4.3 Ta2N薄膜性質………………………………………..……………..57
4.3.1 Ta2N薄膜電性及沈積速率與基板偏壓的關係………………….57
4.3.2 Ta2N薄膜電性及沈積速率與基板溫度的關係…………..……...58
4.3.3 Ta2N薄膜之結構分析……………………..……………………...58
4.4 TaN薄膜性質…………………………..…………………………...59
4.4.1 TaN薄膜電性及沈積速率與基板偏壓的關係………………......59
4.4.2 TaN薄膜之表面型態觀察…………………………………….….59
4.4.3 TaN薄膜之穿透式電子顯微鏡(TEM)觀察………………….…..60
4.5 鉭及鉭基擴散阻障層阻礙性質分析…..………………………….61
4.5.1 Cu(150 nm) / Ta(100 nm) / Si結構……………………..………...61
4.5.1.1 片電阻(Sheet Resistance)……………….……………………...61
4.5.1.2 低掠角X光繞射圖(GIAXD)………………………...………...62
4.5.1.3 掃瞄式電子顯微鏡(SEM).………………………………….…62
4.5.1.4歐傑電子能譜(AES)縱深分析…………………………………63
4.5.1.5 Cu / Ta / Si結構高溫行為與失效機制之探討…….…………..63
4.5.2 Cu(150 nm) / Ta2N(100 nm) / Si結構…………………………….63
4.5.2.1 Cu / Ta2N(as-dep) / Si結構…………………………………..…64
4.5.2.1.1 片電阻(Sheet Resistance)..…………………………………...64
4.5.2.1.2 低掠角X光繞射圖(GIAXD)………………………………..64
4.5.2.1.3 掃瞄式電子顯微鏡(SEM)………………………………...…65
4.5.2.1.4 歐傑電子能譜(AES)縱深分析………………………..……..66
4.5.2.2 Cu / Ta2N(100℃) / Si結構……………………………………...66
4.5.2.2.1 片電阻(Sheet Resistance)…………………………………….66
4.5.2.2.2 低掠角X光繞射圖(GIAXD)………………………………...67
4.5.2.2.3 歐傑電子能譜(AES)縱深分析……………………………....67
4.5.2.3 Cu / Ta2N(200℃) / Si結構……………………….……………..68
4.5.2.3.1 片電阻(Sheet Resistance)……………………………….……68
4.5.2.3.2 低掠角X光繞射圖(GIAXD)……………………………...…68
4.5.2.3.3 歐傑電子能譜(AES)縱深分析………………………………68
4.5.2.4 Cu / Ta2N / Si結構高溫行為與失效機制之探討……………...69
4.5.3 Cu(150 nm) / TaN(100 nm) / Si 結構…………………………….70
4.5.3.1 Cu / TaN(1%) / Si 結構………………………………………...70
4.5.3.1.1 片電阻(Sheet Resistance)…………….………………………70
4.5.3.1.2低掠角X光繞射圖(GIAXD)....................................................71
4.5.3.2 Cu / TaN(2%) / Si 結構………………………………………...71
4.5.3.2.1 片電阻(Sheet Resistance)…………………………………….71
4.5.3.2.2低掠角X光繞射圖(GIAXD)....................................................72
4.5.3.2.3 歐傑電子能譜(AES)縱深分析………………………………72
4.5.3.3 Cu / TaN(4%) / Si 結構………………………………………...73
4.5.3.3.1 片電阻(Sheet Resistance)………………………………….…73
4.5.3.3.2低掠角X光繞射圖(GIAXD)....................................................73
4.5.3.3.3 掃瞄式電子顯微鏡(SEM).......................................................74
4.5.3.3.4 歐傑電子能譜(AES)縱深分析………………………………74
4.5.3.4 Cu / TaN / Si結構高溫行為與失效機制之探討.........................74
第五章、結論…………………………………………..………………122
第六章、參考文獻……………………………………………………..124


表目錄
表2-1美國半導體協會預估IC技術之發展概況……………………...21
表2-2 導線材料之電、物理與化學性質比較…………………………25
表2-3 各種銅沉積技術之比較………………………………………..27
表4-1 本實驗決定之Ta 4f電子束縛能….…………………………...81
表4-2 不同基板偏壓大小和Ta薄膜電阻率及沈積速率數值之對照表
…………………………………………………………………88
表4-3 不同基板偏壓大小和Ta2N薄膜電阻率及沈積速率數值之對照表…………………………………………………………….....92
表4-4 不同基板溫度下濺鍍Ta2N薄膜其沉積速率及電性與基板加溫之關係對照表………………………………………………….92
表4-5 不同基板偏壓大小和TaN薄膜電阻率及沈積速率數值之對照表……………………………………………………………….95
表4-6 Cu / Ta / Si 結構在不同退火溫度之片電阻值對照表...………99
表4-7 Cu / Ta2N(as-dep) / Si 結構在不同退火溫度之片電阻值對照表………………………………………………………..…...….103
表4-8 Cu / Ta2N(100℃) / Si 結構在不同退火溫度之片電阻值對照表………………………………………………………………..107
表4-9 Cu / Ta2N(200℃) / Si 結構在不同退火溫度之片電阻值對照表………………………………………………………………..110
表4-10 Cu / TaN(1%) / Si 結構在不同退火溫度之片電阻值對照表..................................................................................................113
表4-11 Cu / TaN(2%) / Si 結構在不同退火溫度之片電阻值對照表………………………………………………………………..115
表4-12 Cu / TaN(4%) / Si 結構在不同退火溫度之片電阻值對照表………………………………………………………………..118

圖目錄
圖2.1 時間延遲對元件尺寸的關係圖..……………………………….22
圖2.2 突穿(Spiking)現象導致元件失效之示意圖..…………………..23
圖2.3 鋁導線因電致遷移而導致斷路之示意圖……….……………..24
圖2.4 Al/SiO2和Cu/low-k導線的金屬層數目與元件線寬的關係圖...26
圖2.5 Dual Damascene 製程之示意圖………………………………..28
圖2.6 擴散阻障層X置於A、B材料間之示意圖.………………….…29
圖2.7 各種擴散阻障層之示意圖…………………….………………..30
圖2.8 Ta-N系統之相圖……………………….………………………..31
圖2.9 Ta-N電阻值與氮氣流量之關係圖………………….…………..32
圖3.1 實驗流程圖………………………………….…………………..43
圖3.2 矽晶片清洗步驟…….…………………………………………..44
圖3.3 濺鍍系統示意圖…………………………………………….…..45
圖3.4 真空退火爐示意圖……………………………………………...46
圖3.5 真空退火升溫曲線……………………….……………………..47
圖3.6 α-Step膜厚量測示意圖…………………..……………………..48
圖3.7 四點探針電性量測示意圖…………..………………………...49
圖3.8 AES depth profile 分析原理示意圖……………………………50
圖3.9 XPS分析原理示意圖…………………………………………...51
圖4.1 不同氮氣流量之下,Ta及TaNx薄膜之電阻率……………….76
圖4.2 在不同氮氣流量下施加基板偏壓-100V,濺鍍鉭及鉭基薄膜所顯示之X光繞射圖譜…………………………..….…………..77
圖4.3 在不同氮氣流量下施加基板偏壓-120V,濺鍍鉭及鉭基薄膜所顯示之X光繞射圖譜………………………………………….78
圖4.4 在不同氮氣流量下施加基板偏壓-140V,濺鍍鉭及鉭基薄膜所顯示之X光繞射圖譜………………………………………….79
圖4.5. SEM觀察不同氮氣流量下,Ta-N薄膜之表面型態………….80
圖4.6 不同氮氣流量比例下,以XPS分析Ta 4f之結果…………...…82
圖4.7 氮氣流量比0 %之XPS試片經過baseline校正後,訊號峰之分解結果…………………………………………………………..83
圖4.8 氮氣流量比0.5 %之XPS試片經過baseline校正後,訊號峰之分解結果……………………………………………………….84
圖4.9 氮氣流量比1 %之XPS試片經過baseline校正後,訊號峰之分解結果 .......................................................................................85
圖4.10 氮氣流量比2.5 %之XPS試片經過baseline校正後,訊號峰之分解結果................................................................................86
圖4.11 不同基板偏壓(Bias)下濺鍍Ta薄膜
(a) Bias與電阻率之關係
(b) Bias與沈積速率之關係……........…………………….….87
圖4.12 不同基板偏壓下,在矽晶基材上沈積之Ta薄膜所顯示之X光繞射圖譜……...........................................………………...89
圖4.13 不同基板偏壓下濺鍍Ta2N薄膜
(a) Bias與電性之關係
(b) Bias與沉積速率之關係..........................………………...90
圖4.14 不同基板溫度下濺鍍Ta2N薄膜
(a) 沉積速率與基板加溫之關係
(b) 電性與基板加溫之關係.………………………………...91
圖4.15 不同基板溫度下,在矽晶基材上沈積之Ta2N薄膜所顯示之X光繞射圖譜...............................................................................93
圖4.16 不同基板偏壓下濺鍍TaN薄膜
(a) Bias與沉積速率之關係
(b) Bias與電性之關係.............................................................94
圖4.17. SEM觀察不同Bias下,TaN薄膜之表面型態.........………..96
圖4.18 TaN薄膜之Plan-view TEM照片
(a)DF Image (b)Diffraction Pattern………………..........……..97圖4.19 TaN薄膜之EELS分析................................................................98
圖4.20 Cu / Ta / Si 結構在不同退火溫度之片電阻變化圖.......……..99
圖4.21 Cu / Ta / Si 結構在不同退火溫度之X光繞射圖…….....…...100
圖4.22 SEM觀察Cu / Ta / Si結構在不同退火溫度之表面型態........101
圖4.23 Cu / Ta / Si 結構之AES縱深分析圖譜
(a)700℃ (b)800℃……...........................……………………102
圖4.24 Cu / Ta2N(RT.) / Si 結構在不同退火溫度之片電阻變化圖..............................................................…………………....103
圖4.25 Cu / Ta2N(RT.) / Si 結構在不同退火溫度之X光繞射圖.............….............................................……………...…….104
圖4.26 SEM觀察Cu / Ta2N(RT.) / Si結構在不同退火溫度之表面型態...........................................................................……...……..105
圖4.27 Cu / Ta2N(RT.) / Si 結構之AES縱深分析圖譜
(a)700℃ (b)800℃...................................................................106
圖4.28 Cu / Ta2N(100℃) / Si 結構在不同退火溫度之片電阻變化圖..............................................................................................107
圖4.29 Cu / Ta2N(100℃) / Si 結構在不同退火溫度之X光繞射圖...108
圖4.30 Cu / Ta2N(100℃) / Si 結構經700℃火後之AES縱深分析圖譜................................................................................................109
圖4.31 Cu / Ta2N(100℃) / Si 結構經700℃火後之SEM照片...........109
圖4.32 Cu / Ta2N(200℃) / Si 結構在不同退火溫度之片電阻變化圖..............................................................................................110
圖4.33 Cu / Ta2N(200℃) / Si 結構在不同退火溫度之X光繞射圖...111
圖4.34 Cu / Ta2N(200℃) / Si 結構之AES縱深分析圖譜
(a)700℃ (b)800℃...................................................................112
圖4.35 Cu / TaN(1%) / Si 結構在不同退火溫度之片電阻變化圖.....113圖4.36 Cu / TaN(1%) / Si 結構在不同退火溫度之X光繞射圖.........114
圖4.37 Cu / TaN(2%) / Si 結構在不同退火溫度之片電阻變化圖.....115圖4.38 Cu / TaN(2%) / Si 結構在不同退火溫度之X光繞射圖.........116
圖4.39 Cu / TaN(2%) / Si 結構經800℃火後之AES縱深分析圖譜..117圖4.40 Cu / TaN(2%) / Si 結構經800℃退火後之SEM照片.............117
圖4.41 Cu / TaN(4%) / Si 結構在不同退火溫度之片電阻變化圖.....118圖4.42 Cu / TaN(4%) / Si 結構在不同退火溫度之X光繞射圖.........119
圖4.43 SEM觀察Cu / TaN(4%) / Si結構在不同退火溫度之表面型態
(a)600℃ (b) 700℃ (c) 800℃ (d)(e) 800℃下之EDS分析..120
圖4.44 Cu / TaN(4%) / Si 結構經800℃火後之AES縱深分析圖譜..121
(1)T.Oku ,E.Kawakami ,M.Uekubo ,K.Takaahiro S. amaguchi ,M. Murakami, Appl. Surf. Sci. 99, 265-272(1996).
(2)G.S. Chen ,P.Y. Lee ,S.T. Chen, Thin Solid Films 353, 264-273(1999).
(3)N. Schonberg,“An X-ray Study of the Tantalum-Nitrogen ystem”,Acta Chem.Scand., 8, 199(1954).
(4)Kyung-Hoon Min, Kyu-Chang Chun, and Ki-Bum Kim, “Comparative Study of Tantalum and Tantalum Nitrides as a Diffusion Barrier for Cu Metallization”, j. Vac. Sci. Technol. B 14(5), 3263(1996).
(5)G. E. Moore, IEDM Tech. Dig., 12, 11(1975)
(6)H. Iwai, IEEE J. Solid-State Circuits, 34, 357(1999)
(7)S. Murarka, Materials Science and Engineering, R19, 87(1997)
(8)S. C. Sun, “Process Technologies for Advanced Metallization and Interconnect Systems,” Tech. Dig. IEDM, 765(1997)
(9)Stanley Wolf, Richard N. Tauber, Silicon Processing for The VLSI Ear, Sunest Beach , Calif.:Lattice Press, 720(2000).
(10)莊達人,VLSI製造技術, 高立, 頁167, 民87
(11)S.Q. Wang et al., J. of Appl. Phys., 73, No.5,2301(1993).
(12)D.H. Kim et al., Appl. Phys. Lett., 69, No. 27,4182(1996).
(13)張俊彥主編, 積體電路製程及設備技術手冊, 經濟部技術處, 民86.
(14)K.H. Min et al., F. Vac. Sci. Tech., B, 14, 3263(1996).
(15)W. Wang et al., Adv. Metal and Inter. Sys. For ULSI Applic.,(1997).
(16)P. Singer,”Tantalum, Copper, and Damascene: The Future of Interconnects,”Semiconductor International, 90(1998).
(17)W. Wang, J. Foster, N. Zimmerman, A. Wendt, J. H. Booske and N. Hershkowitz,”Magnetic of Cu,”in Advanced Metallization and Interconnect Systems for ULSI Applications,(1997).
(18)Paxcal Doppelt and Thomas H. Baum, “The Chemical Vapor Deposition of Copper and Copper Alloys, “The Solid Film, 270, 480(1995).
(19)P. Doppelt and T. H. Baum, “Chemical Vapor Deposition of Copper for IC Metallization: precursor chemistry and molecular structure,” MRS Bulletin, 41, June(1994).
(20)R. J. Contolini, L. Tarte, R. T. Graff, and L. B. Evans, “Copper Electroplating Process for Sub-half-micron ULSI Structures, “IEEE VMIC Conf., 322(1995).
(21)J. P. O’Kelly , K. F. Mongey , Y.Gobil , J. Torres ,P.V. Kelly , G. M. Crean, Room temperature electroless plating copper seed layer process for damascene interlevel metal structures, Microelectronic Engineering 50 (2000) 473–479.
(22)L. Velo, A. Paranjpe, M.Moslehi, G. Shuang, T. Omstead, Z. Liu, R. Bubber, C. David, D. Campbell, B. Relja, Proc. 15th Inter. VLSI Multilevel Interconnection Conf., Santa Clara, CA, USA, June 16-18(1998)
(23)C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landix, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff, and J. E. Cromin, “Dual Damascene: a ULSI wring technology, “IEEE VMIC Conf., 144,(1991).
(24)M. A. Nicolet, “Diffusion Barriers in Thin Films, “Thin Solid Films, 52, 415-433(1978).
(25)Whitesides, G., Stedronsky, R., Casey, C.P., San Filippo, J., J. Am. Chem. Soc., 91, 1426(1970).
(26)Toivo T. Kodas, The Chemistry of Metal CVD, Weinheim, N. Y., 9-14(1194).
(27)H. Ono, T. Nakano, T. Ohta, “Diffusion Barrier Effects of Transition Metals for Cu/M/Si Multi layers (M=Cr, Ti, Nb,Mo, Ta, W),” Applied Physics Lett., 64,1551(1994).
(28)J. O. Olowolafe, J. Li, J. W. Mayer, and E. G. Colgan, “Effects of Oxygen in TiNx on The Diffusion of Cu in Cu/TiN/A1 and Cu/TiNx/Si Structures, ‘Appl. Phys. Lett., 58,469(1991).
(29)D.–H. Kim, S.–L. Cho, K.–B. Kim, J.–J. Kim, J.–W. Park, and J.–J. Kim, “Diffusion Barrier Performance of Chemically Vapor Deposited TiN Films Prepared Using Tetrakis-dimethy-amino Titanium in The Cu/TiN/Si Structrue, “Appl. Phys. Lett., 69, 4182(1996).
(30)Shi-Qing Wang, I. Raaijmarkers, B. J. Burrow, S. Suthar, S. Redkar, and K.–B. Kim, “Reacively Sputtered TiN as a Diffusion Barrier Between Cu and Si, “J. A. Phys., 68, 5176 (1990).
(31)K. Holloway et al., “Tantalum as a Diffusion Barrier between Copper and Silicon: Failure Mechanism and Effect of Nitrogen Additions, “Appl. Phys, 71, 5433(1992).
(32)M.T. Wang, Y.C. Lin, M.C. Chen, “Barrier Properties of Very Thin Ta and TaN layers Against Copper Diffusion, “J. of the Electrochemical Society, 145, 2538(1998).
(33)E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela, and M.–A. Nicolet, “Tantalum-based Diffusion Barriers in Si/Cu VLSI Metallizations, “J.Appl. Phys., 70, 1369 (1991).
(34)S.–Y. Jang, S.–M. Lee, H. K. Balk, “Tantalum and Niobium as a Diffusion Barrier between Copper and Silicon, “J. of Materials Science: Materials in Electronics, 7, 271(1996).
(35)K.-W. Kwon, H. J. Lee, C. Ryu, R. Sinclair, and S. S Wong, “Characteristics of Ta as an Underlayer for Cu Interconnects, “in Advanced Metallization and Interconnect Systems for ULSI Applications, Oct.(1997).
(36)M. K. Bohr Advanced Metalization for ULSI Application In 1996 XII, Materials Research Society, p.3-10 (1997).38.b.
(37)M. Stavrev, C. Wenzel, A. Moller, K. Drecher, “Sputter of Tantalum-based Diffusion Barriers in Si/Cu/ Metallizaiton: Effects of Gas Pressure and Composition, “Appiled Surface Science, 91, 257(1995).
(38)M. Takeyama, A. Noya, T. Sase, A. Ohta, and K. Sasaki, “Propertes of TaNxFilms as Diffusion Barriers in The Thermally Stable Cu/Si Contact Systems, “J. Vac. Sci. Technol. B, 14, 674(1996).
(39)Kyung-Hoon Min, Kyu-Chang Chun, and Ki-Bum Kim, “Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization, “J. Vac .Sci. Technol. B, 14, 3263(1996).
(40)J.W. Nah, S.K. Hwang, C.M. Lee, “Development of a complex heat resistant hard coating based on (Ta, Si)N by reactive sputtering”, Materials Chemistry and Physica 62, 115(2000).
(41)J. S. Reid, E. Kolawa, R. P. Ruiz, and M.-A. Nicolet, “Evaluation of Amorphous (Mo, Ta, W)-Si-N Diffusion Barriers for Cu Metallizations, “Thin Solid Films, 236, 319(1993).
(42)D. J. Kim and Y. T. Kim, “Nanostrctrued Ta-Si-N Diffusion Barriers for Cu Metallization, “J. Appl. Phys, 82, 4847(1997).
(43)K. S. Weil, J. Y. Kim, P. N. Kumta, “Synthesis of Nanoscale Titanium Nitride-Tungsten Nitride Alloy Powders Using a Novel Complexed Precursor,“Mater. Lett., 39, 292-297(1999).
(44)Yoon-Jik Lee, B.-S Suh, M. S. Kwon, and C.-O. Park, “Barrier Properties and Failure Mechanism of Ta-Si-N Thin Films for Cu Interconnection, “J. Appl. Phys., 85, 1927(1999).
(45)T. Oku, M. Uekbo, E. Kawakami, K. Nii, T. Nakano, T. Ohta, and M. Murakami,“Thermal Stability of WNx and TaNx Diffusion Barriers Between Si and Cu, “IEEE VMIC Conf., 182(1995).
(46)Masaki Uekubo, T. Oku, K. Nii, M. Murakami, K. Takahiro. S. Yamaguchi, T. Nakano, T. Ohta, “W TaNx Diffusion Barriers between Si and Cu,“Thin Solid Film. 286, 170-175(1996).
(47)Mayumi Takeyama, Atsushi Noya, and Tomoyuki Fukda, “Thermal Stability of Cu/W/Si Contact System Using Layer of Cu(111) and W(110) Perferred Orientaions, “J. Vac. Sci. Techonl. A, 15, Mar/Apr(1997).
(48)Ivo J. Raaijmarkers, Tarshish Setalvad, Ameet S. Bhansail, Bard J Burrow, Laslo Gutal and Ki-Bum Kim, “Microstructrue and Barier Materials, 19, 1221-1226(1990).
(49)J. P. Lu, Q. Z. Hong, W. Y. Hsu, G. A. Dixit,V. Cordasco, S.W. Rusell, J. D. Lutttner, R. H. Havemann, L. K. Magel, and H.L. Tsai,“An Ammonia-free PECVD Process for Depositing Tungsten Nitride Films and Its Applications in Copper Metallization, “in Advanced Metallization and Interconnect Systems for Applications, Oct(1997).
(50)J. S. Reid, R. Y. Liu, Paul Matrin Smith, R. P. Ruiz, M-A Nicolet, “W-B-N Diffusion Barrier for Si/Cu/ metalization, “Thin Solid Film, 262, 218-223(1995).
(51)Eric Cheney, Dennis Lazarof, hewlett-packard, Corvallis, Oreng, Diana Morales, Lip Yap,Leon Chiu, Johnson Matthey Electronics, Spokane, Washington, “Defect Performance for PVD of TiW and TiWN Film, ‘Solid state Technology, Nivember, 109-114(1997).
(52)H. Ramarotafika and G. Lemperiere, “Influence of a D.C. Substrate Bias on The Resistivity, Composition, Crystallite Size and Microstrain of WTi and WTi-N films”, Thin Solid Films, 266, 267-273(1995).
(53)T. Hurkmans, T. Trinh, D. B. Lewis, J. S. Brooks and W.-D. Munz,” Multiayered Titanium Tungsten Nitride Coatings with a Super lattice Structure Grown by Unbalanced Magnetron Sputtering”, Surface and Coating Technology, 76-77, 159-166(1995).
(54)J. M. Oparowski, R. D. Sisson, Jr., and R. R. Biederman, The Parameters on The Microstructure and Properties of Sputter-desposited TiW Thin Film Diffusion Barriers, “Thin Solid Films, 153, 313-328(1987).
(55)C.-S. Shin et al., / Thin Soild Films 402(2002) 172-182.
(56)G. Dirk, R. A. M. Wolters and A. J. Nellissien, “On the Microstructure-property Relationship of W-Ti-(N) Diffusion Barriers”, Thin Solid Films, 193/194, 201-210(1990).
(57)J.W. Nah, S.K. Hwang, C.M. Lee, “Development of a complex heat resistant hard coating based on (Ta, Si)N by reactive sputtering”, Materials Chemistry and Physica 62, 115(2000).
(58)X. S. Elzbieta, J. S. Chen, J. S. Reid and M. A. Nicolet, “Properties of Reactively Sputter-Deposited Ta-N Thin Films”,Thin Solid Films, 236, 347-351(1993).
(59)N, Terao et al.,“Structure of Tantalum Nitrides”, Jpn. Appl. Phys, 10, 248(1971).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊