跳到主要內容

臺灣博碩士論文加值系統

(52.203.18.65) 您好!臺灣時間:2022/01/19 16:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王能誠
研究生(外文):Neng-Cheng Wang
論文名稱:二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究
論文名稱(外文):Preparation and Characteristics of Ferrite Catalysts for Reduction of CO2
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-shyang Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:鐵氧磁體觸媒二氧化碳分解水熱法
外文關鍵詞:CO2 decompositionferritecatalysthydrothermally synthesized
相關次數:
  • 被引用被引用:9
  • 點閱點閱:729
  • 評分評分:
  • 下載下載:145
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在以水熱法製備高表面積、高活性之 ( MnxZn1-x )Fe2O4及( MnxNi1-x )Fe2O4觸媒粉末,並探討觸媒粉末組成、活化時間、反應氣體流速對二氧化碳還原反應之影響。實驗是以Fe、Mn、Zn及Ni金屬硝酸鹽為起始原料,氨水及氫氧化鈉為沈澱劑,以水熱處理來合成奈米級之觸媒粉末,並藉由XRD、TEM、BET及ICP等儀器之分析與觀察,瞭解合成粉體之諸特性。研究結果顯示:
1. 錳鋅鐵氧磁體觸媒
經水熱條件150℃、2 h所合成之尖晶石結構(MnxZn1-x )Fe2O4觸媒粉末,其結晶子大小為21 ~ 29 nm,比表面積則為73 ~ 143 m2/g。此粉末經長時間H2還原後,會形成介穩態之氧缺陷結構且仍維持spinel相,並未有其它相之產生。在(MnxZn1-x )Fe2O4(x = 0.2、0.25、0.33、0.5、0.67、0.75、0.8)觸媒填充量為2 g及CO2反應氣體流速為5 mL/min時, CO2之分解量會隨著Zn含量之增加而增加, ( Mn0.33Zn0.67 )Fe2O4觸媒粉末,有較佳之CO2反應氣體轉化量。
2. 錳鎳鐵氧磁體觸媒
經水熱條件140℃、2 h所合成之尖晶石結構(MnxNi1-x)Fe2O4觸媒粉末,其結晶子大小為18 ~ 24 nm,比表面積則為107 ~ 153 m2/g。經長時間H2還原,與錳鋅鐵氧磁體觸媒粉末有相似之實驗結果,即仍維持spinel相。(MnxNi1-x)Fe2O4觸媒在與錳鋅鐵氧磁體觸媒相同之觸媒反應條件下,其對CO2之轉化量隨著Mn含量之增加而增加。( Mn0.67Ni0.33 )Fe2O4之觸媒粉末,具有最佳之CO2反應氣體轉化量。
To deduce CO2 gas, high specific surface and high activity of nanosized (MnxZn1-x)Fe2O4 and (MnxNi1-x)Fe2O4 powders were synthesized by the hydrothermal process. The flow rate of carbon dioxide、 the time of activation and the composition of the catalysts for the reduction carbon dioxide into carbon were investigated. The ferrite nanopowders were synthesized by the reactions pf various metal Fe、Mn、Zn and Ni nitrate aqueous. Synthesized powders are characterized by XRD, TEM, BET and ICP. The results show in the following description:
I. Mn-Zn Ferrite
Mn-Zn ferrite catalysts with nano-scale crystalline size (21 ~ 29 nm) and high specific surface area (73 ~ 143 m2/g) were synthesized by hydrothermal process at 150℃ for 2 hrs. The Mn-Zn ferrites were still spinel phase when them were annealing at 300℃. (Mn0.33Zn0.67)Fe2O4 catalyst shows the best CO2 decomposition performance after H2 reducing at 300℃ for 4 hrs.
II. Mn-Ni Ferrite
Mn-Ni ferrite catalysts with nano-scale crystalline size (18 ~ 24 nm) and high specific surface area (107 ~ 153 m2/g) were synthesized by hydrothermal process at 140℃ for 2 hrs. The Mn-Ni ferrites had structure stability as same as Mn-Zn ferrite at 300℃. (Mn0.67Ni0.33)Fe2O4 catalyst shows the best CO2 decomposition performance after H2 reducing at 300℃ for 2 hrs.
目 錄

中文摘要………………………………………………….…....Ⅰ
英文摘要……………………………………………………….Ⅱ
目錄……………………………………………………………Ⅲ
表目錄………………………………………………………...Ⅶ
圖目錄………………………………………………………...Ⅸ
第一章 緒論……………………...……………………………1
1- 1前言…………………………………………………….1
1- 2 溫室效應簡介…………………………………….……2
1-2-1溫室效應之成因…………………………………………….2
1-2-2二氧化碳的來源…………………………………………….3
1-2-3二氧化碳對環境的影響…………………………………….3
1- 3二氧化碳固定的方法…………………………………..4
1-3-1光化學固定法……………………………………………….5
1-3-2電化學還原法……………………………………………….6
1-3-3光電化學還原法…………………………………………….6
1-3-4光觸媒還原法……………………………………………….7
1-3-5金屬觸媒還原法……………………………………...……..8
1-3-6陶瓷觸媒還原法…………………………………………….8
1- 4觸媒的種類與特性比較…..…………………………....9
1- 5奈米材料在觸媒上的應用……………………………..9
1-5-1奈米粒子的基本性質…………..…………………………...9
1-5-2奈米粒子之應用………………………………...................12
1- 6研究目的………………………………………………12
第二章 理論基礎與前人研究……………………………….19
2- 1微粒觸媒近代之研究…….……...……………………19
2- 2水熱合成法……...…………………………….............20
2-2-1概述……………………………………………….…………20
2-2-2水熱反應系統…………………….………………………....21
2-2-3水熱反應機構…………………………………..…………...22
2-2-4高壓反應釜反應容積與溫度之關係……………………….24
2-2-5水熱法製備粉體的優點…………………………………….24
2-2-6水熱製程的改進…………………………………………….25
2- 3結晶理論與機制………………………...…………….27
2-3-1成核理論…...………………….…………………………….27
2-3-2成核熱力學……………….…………………………………28
2-3-3成長理論……………………………...……….…………….30
2-3-4溶質濃度與晶體成核、成長之關係…………………..….....30
2- 4尖晶石型鐵氧磁體…………...…………………….…31
2- 5催化反應之特性…………...……………………...…..32
2- 6操作參數之探討………………………………………32
2-6-1操作溫度……………………………………………………32
2-6-2 CO2進流濃度………………………………………….……33
2-6-3水氣濃度……………………………………………………33
第三章 實驗方法與步驟………………………………...46
3- 1實驗流程……………………...………………….……46
3- 2觸媒粉末之製備………………………………………47
3-2-1起始原料……….……………………………………………47
3-2-2混合之方式……………………...………………….………47
3-2-3水熱處理……………...…..………………….………….….48
3-2-4離心、乾燥………………...………………………...………48
3- 3觸媒反應………………………………………………48
3-3-1設備說明……..………………...………….………………..48
3-3-2實驗步驟……………………….……………………….…49
3-3-2-1觸媒之填充…………………...………..………………49
3-3-2-2觸媒之活化…………………...……………..…………49
3-3-2-3二氧化碳分解反應…………………………….………50
3- 4性質分析及觀察方法……...……………………….…50
3-4-1 X射繞射儀………………………………….……………..50
3-4-2自動氣相物理吸附儀………………………………….…..51
3-4-3感應耦電漿原子放射光譜分析…………………….……..51
3-4-4穿透式電子顯微鏡…………………………………...……51
3- 5合成粉末之名稱………………………………………52
第四章 結果與討論…………………………………….……62
4- 1錳鋅鐵氧磁體觸媒粉末……………...…………….…62
4-1-1相分析………………………..……………………………...62
4-1-2粒子形態分析…………………….……….………………...62
4-1-3結晶粒徑大小………..……………………………..……….62
4-1-4組成分析…………………………………………………….63
4-1-5觸媒活性測試……………………………………………….63
4-1-5-1活化時間對觸媒反應之影響…………………………...63
4-1-5-2反應氣體流速對觸媒反應之影響……………………...64
4-1-5-3錳鋅鐵氧磁體組成配比對觸媒反應之影響…………...64
4-2錳鎳鐵氧磁體觸媒粉末…………………….…………78
4-2-1水熱反應溫度之影響……………………………….………78
4-2-2相分析………………………..……………………………...78
4-2-3粒子形態分析…………………….……….………………...78
4-2-4結晶粒徑大小………..……………………………..……….78
4-2-5組成分析…………………………………………………….79
4-2-6觸媒活性測試……………………………………………….79
4-2-6-1活化時間對觸媒反應之影響…………………………...79
4-2-6-2反應氣體流速對觸媒反應之影響……………………...80
4-2-6-3錳鋅鐵氧磁體組成配比對觸媒反應之影響…………...80
第五章 結論……………………………………………….....95
參考文獻………………………………..…………………….97

表 目 錄

Table 1-1 Comparisons of noble metals and oxidized metals catalysts……………...14
Table 1-2 Study results of nano-catalys recently….....................................................15
Table 2-1 Comparison of well-known powder synthetic methods (solid-state
reaction, sol-gel, co-precipitation, and hydrothermal methods)….….……34
Table 3-1 Solubility product constants (Ksp) and 0.5 M nitrate solutions occur
during precipitation as hydroxides of pH value by using alkali at 25℃….53
Table 3-2 Specific analysis of Iron(Ⅲ) nitrate nonahydrate………………………....53
Table 3-3 Specific analysis of manganese(Ⅱ) nitrate tetrahydrate………………….54
Table 3-4 Specific analysis of Zinc(Ⅱ) nitrate tetrahydrate……………..…………..54
Table 3-5 Specific analysis of nickel (Ⅱ) nitrate tetrahydrate…...………………….55
Table 3-6 Specific analysis of ammonium hydroxide……………………..………....55
Table 3-7 Specific analysis of sodium hydroxide………………………..…………..56
Table 3-8 Specific analysis of nitrogen….…………………………………………...56
Table 3-9 Specific analysis of hydrogen……...……………………………………...57
Table 3-10 Specific analysis of carbon dioxide.…...………………………………...57
Table 4-1 Crystallite size, specific surface area (SBET) and particle size of Mn-Zn
ferrites hydrothermally synthesized at 150℃.……………………….……66
Table 4-2 Starting composition of powders hydrothermally synthesized at 150℃
and ΔMn, ΔZn by ICP analysis for various composition Mn-Zn
ferrites……………………………………………………………………..67
Table 4-3 Phase, spinel ratio of Mn-Ni ferrite powders hydrothermally
synthesized for 2 h……………..……………………………..….…..……81
Table 4-4 Crystallite size, specific surface area (SBET) and particle size of Mn-Ni
ferrite powders hydrothermally synthesized at 140℃for 2 h…………......82
Table 4-5 Starting composition of powders hydrothermally synthesized at 140℃
and ΔMn, ΔNi by ICP analysis for various composition Mn-Ni
ferrites……………………………………………..…………………...….83

圖 目 錄

Fig. 1-1 The composition of greenhouse gase………………………….....…………16
Fig. 1-2 The circulatory system of carbon in the earth…………….………………...17
Fig. 1-3 The relationship between the cell potential (V) and CO2 decomposition
efficiency………………………………………………………….………..18
Fig. 2-1 Illustration of precipitation reaction processed crystal growth……………..35
Fig. 2-2 (a) Relationship between temperature and pressure (b) Relationship
between temperature and density…………..………………………………36
Fig. 2-3 Illustration of the relationship between the volume of liquid phase and
vapor pressure in autoclave……………...……………….………………....37
Fig. 2-4 Relationship between the radius of nuclei and the free energy of system….38
Fig. 2-5 Relationship between the super-saturated degree of solute in solution at a
fixed temperature and the rate of homogeneous nucleation………....……..39
Fig. 2-6 Illustration of (a) movement of solvated solute molecules and (b) corres-
ponding energy changes of each transformation based on the crystal
growth…………………………………………………….………………...40
Fig. 2-7 Concentration of ions at the outskirt of solidus surface based on areaction
controlled process………………………….…………………........…….…41
Fig. 2-8 Solute concentration, reaction time and each step of crystalline growth for
the dissolution / precipitation mechanism………..………………...….…....42
Fig. 2-9 (a) Spinel structure, and (b) sub-lattice structure…………………………...43
Fig. 2-10 Mechanism of CO2 decomposition by oxygen deficient ferrite……….…..44
Fig. 2-11 Diagram of operating temperature range for various catalysts in SCR.…...45
Fig. 3-1 The (a) reactor and (b) controller of hydrothermal equipment…………..….58
Fig. 3-2 The diagram of catalytic reaction system…………………………………...59
Fig. 3-3 The furnace and the quartz tube of catalytic reaction……………………….60
Fig. 3-4 The automation physic adsorbability analysis meter……………………….61
Fig. 4-1 XRD patterns of various Mn-Zn ferrite powders hydrothermally
synthesized by process at 150℃ for 2 h………………………...…………68
Fig. 4-2 TEM photograph of hydrothermally synthsized Mn-Zn ferrite powders
( a ) MZ-41, ( b ) MZ-31, ( c ) MZ-21, ( d )MZ-11, ( e )MZ-12,
( f )MZ-13, ( g )MZ-14…..............................................................................69
Fig. 4-3 TEM photograph ( a, b ) of ( Mn0.5Zn0.5 )Fe2O4 powder hydrothermally synthesized at 150℃ for 2 h and the selected area diffraction pattern (c)
operated at the position noted in (b)…...………………………………..…70
Fig. 4-4 XRD patterns of (Mn0.5Zn0.5)Fe2O4 powder annealed at 300 ℃ for
various time in H2…………………………………...…………………...…71
Fig. 4-5 Effect of H2 (100 mL/min) reduction time on amount of CO2 converted
by (Mn0.5Zn0.5)Fe2O4 catalyst at 300℃. (Catalyst: 2 g, CO2 flow rate:
5 mL/min)………………………………………………………………..…72
Fig. 4-6 Effect of H2 (100 mL/min) reduction time on amount of CO2 converted by various Mn-Zn ferrites catalysts at 300℃. (Catalysts : 2 g ,
CO2 flow rate : 5 mL/min )……………………………...………………....73
Fig. 4-7 TEM photograph of the (Mn0.5Zn0.5) Fe2O4 annealed at 300℃ for
(a) 0 h and (b) 4 h in H2 and the selected area diffraction pattern
( c, d ) operated at the position noted in ( a, b )……………..………..…..74
Fig. 4-8 Effect of CO2 flow rate on amount of CO2 converted by
(Mn0.5Zn0.5)Fe2O4 catalyst at at 300℃. (Catalyst: 2 g,
H2 reduction time: 4 h)…………………………………………….…….….75
Fig. 4-9 Relationship of CO2 conversion and time with various of Mn-Zn ferrites
at 300℃. (Catalysts: 2 g, H2 reduction time: 4 h, CO2 flow rate:
5 mL/min)…………………………………………………………………..76
Fig. 4-10 Effect of ( MnxZn1-x )Fe2O4 composition on amount of CO2 converted
by Mn-Zn ferrite catalysts at 300℃. (Catalysts: 2 g,
H2 reduction time: 4 h, CO2 flow rate: 5 mL/min)…….………………….77
Fig. 4-11 XRD patterns of Mn-Ni ferrite powders hydrothermally synthesized at
various temperatures for 2 h…………..……………………………....…..84
Fig. 4-12 XRD patterns of various Mn-Ni ferrite powders hydrothermally
synthesized at 140℃ for 2 h.……..…………………...…………..… …..85
Fig. 4-13 TEM photograph of hydrothermally synthesized Mn-Ni ferrite powders
( a ) MN-41, ( b ) MN-31, ( c ) MN-21, ( d )MN-11, ( e )MN-12,
( f )MN-13, ( g )MN-14……………………..………………………….....86
Fig. 4-14 TEM photograph ( a, b ) of ( Mn0.5Ni0.5 )Fe2O4 powder hydrothermally
synthesized at 140℃ for 2 h and the selected area diffraction pattern
(c) operated at the position noted in (b)…………..…………………….....87
Fig. 4-15 XRD patterns of ( Mn0.5Ni0.5 )Fe2O4 ferrite powder annealed at 300 ℃
for various time in H2 …………………….…………………..………...…88
Fig. 4-16 Effect of H2 (100 mL/min) reduction time on amount of CO2 converted
by (Mn0.5Ni0.5)Fe2O4 catalysts at 300℃. (Catalyst: 2 g,
CO2 flow rate: 5 mL/min)………………………………………………....89
Fig. 4-17 Effect of H2 (100 mL/min) reduction time on amount of CO2 converted
by various Mn-Ni ferrites catalysts at 300℃. (Catalysts: 2 g ,
CO2 flow rate : 5 mL/min )…………………...……...……………………90
Fig. 4-18 TEM photograph of the (Mn0.5Ni0.5) Fe2O4 annealed at 300℃ for
(a) 0 h and (b) 2 h in H2 and the selected area diffraction pattern
( c, d ) operated at the position noted in ( a, b )…….………….………….91
Fig. 4-19 Effect of CO2 flow rate on amount of CO2 converted by
(Mn0.5Ni0.5)Fe2O4 catalysts at 300℃. (Catalyst: 2 g,
H2 reduction time: 2 h)………………………………………………......…92
Fig. 4-20 Relationship of CO2 conversion and time with various of Mn-Ni ferrites
at 300℃. (Catalysts: 2 g, H2 reduction time: 2 h, CO2 flow rate:
5 mL/min)………………………………………………………………....93
Fig. 4-21 Effect of ( MnxNi1-x )Fe2O4 composition on amount of CO2 converted
by Mn-Ni ferrite catalysts at 300℃. (Catalysts: 2 g,
H2 reduction time: 2 h, CO2 flow rate: 5 mL/min)…………………...…...94
Reference
1.M. Tabata, Y. Tamaura, “Complete Reduction of Carbon-Dioxide to Carbon Using Cation-Excess Magnetite”, Nature, 346, 19, 255-256 (1990).
2.Getoff N., “Radiation-Chemistry and the Environment”, Radiation Phys. Chem., 54(4), 377-384 (1999).
3.Sjogren M., Hansson S., Akermark B., “Vitagliano A., Stereocontrol And Regiocontrol In Palladium-Catalyzed Allylic Alkylation Using 1,10-Phenanthrolines As Ligands”, Organometallics, 13(5), 1963-1971 (1994).
4.A. Miedaner, C.J. Curtis, R.M. Barkley, and D.L. DuBois, “Electrochemical Reduction of CO2 Catalyzed by Small Organophosphine Dendrimers Containing Palladium”, Inorg. Chem., 33, 5482-5490 (1994).
5.Hammarstrom L., Sun L.C., Akermark B., Styring S., “Mimicking photosystem II reactions in artificial photosynthesis: Ru(II)- polypyridine photosensitisers linked to tyrosine and manganese electron donors”, Catalysis Today, 58, 57-69 (2000).
6.Chih-Wen Hsieh, A.S.T. Chiang, Cheng-Chung Lee, Sheng-Jenn Yang, “Preparation of TiO2-B2O3 Coating by the Sol-Gel Method”, J. Non-Crystalline Solids, 144, 53-62 (1992).
7.T. Izawa, N.Yamamura, R.Uchimura, T.Yakuoh, “Damage thresholds and optical stabilities of fluoride HR coatings for 193 nm”, SPIE Proceedings, 2114, 297-308 (1993).
8.M.Tsuda, K.Soga, H.Inoue, S.Inoue, A.Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glassesunder 800 nm excitation”, J. Appl. Phys., 85(1), 29-37 (1999).
9.Chun-Lei, Zhang, Shuang Li, Tong- Hao Wu, Shao-Yi Peng, “Reduction of carbon dioxide into carbon by the active wustite and the mechanism of the reaction” Mater. Chem. Phys., 58, 129-145 (1999).
10.M. Tabata, K. Akanuma, K. Nishizawa, K. Mimori, T. Yoshida, “M. Tsuji and Y. Tamaura, “Reactivity of Oxygeb-Deficient Mn(II)-Bearing Ferrites (MnxFe3-xO4-δ) Toward CO2 Decomposition To Ccarbon”, J. Mater. Sci., 28, 6753-6760 (1993).
11.M. Tabata, K. Akanuma, T. Togawa, M.Tsuji, Y. Tamaura, “Mossbauer Study of Oxygen-Deficient Zn(II)-Bearing Ferrites (ZnxFe3-xO4-δ) and Their Reactivity Toward CO2 Decomposition to Carbon” J. Chem. Soc., 90, 1171-1175 (1994).
12.T. Kodama, Y. Wada, T, Yamamoto, M. Tsuji, Y. Tamaura, “CO2 Decomposition to Carbon by Ultrafine Ni(II)-Bearing Ferrite at 300℃”, Mater. Res. Bull., 30, 1039-1048 (1995).
13.M. Tabata, Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, Y. Tamaura, “CO2 Decomposition With Oxygen-Deficient Mn(II) Ferrite”, J. Mater. Sci., 28, 971-974 (1993).
14.T. Kodama, M. Tabata, K. Tominaga, T. yoshida, Y. Tamaura, “Decomposition of CO2 and CO into Carbon with Active Wustite Prepared From Zn(II)-Bearing Ferrite”, J. Mater. Sci., 28, 547-552 (1993).
15.T. Kodama, H. Kato, S. G. Chang, N. Hasegawa, M. Tsuji, Y. Tamaura, “Decomposition of CO2 to Carbon by H2-Reduced Ni(II)- and Co(II)-Bearing Ferrites at 300℃”, J. Mater. Res., Vol. 9, No. 2, 462-467 (1994).
16.T. Kodama, M. Tabata, T. Sano, M. Tsuji, Y. Tamaura, “XRD and Mossbauer Studies on Oxygen-Deficient Ni(II)-Bearing Ferrite with A High Reactivity for CO2 Decomposition to Carbon”, J. Sol. Sta. Chem., 120, 64-69 (1995).
17.M. Tsuji, T. Kodama, T. Yoshida, Y. Kitayama, Y. Tamaura, “Preparation and CO2Methanation Activity of an Ultrafine Ni(II) Ferrite Catalyst”, J. Catal., 164, 315-321 (1996).
18.Birringer R., Herr U. and Gleiter H., “Nanocrystalline materials: a first report”, JIM Trans. Suppl. 27, 43 (1986).
19.蔣孝澈, 陳光龍, ” 由鹽類溶液製作納米氧化物之簡介”, 化工, 46(3), 67 (1999).
20.吳國卿, 董玉蘭, “奈米粒子材料的觸媒性質”, 化工資訊, 13, 42-46 (1999).
21. 盧裕倉, 以觸媒氧化法處理含揮發性有機物煙道氣之研究, 國立中山大學環境工程研究所碩士論文 (1999).
22.The Intergovernmental Panel on Climate Change (1995).
23.呂宗昕, 黃文正, “次微米弛緩性強介電陶瓷粉體之溶液製備技術”, 化工, 第45卷第5期, 31-39 (1998).
24.G. W. Morey, “Hydrothermal Synthesis”, J. Am. Ceram. Soc., 36, 279 (1953).
25.L. M. Demetsyanets, A. N. Lopachev, Some Problems of Consaltants Bureau, London Press, 1 (1973).
26.D. J. Watson, C. A. Randall, R. E. Newnham and J. H. Adairm, “Hydrothermal Formation Diagram in the Lead Titanate System”, in Ceramic Powder Sci.Ⅱ, Am. Ceram. Soc. Inc., 1, 154 (1988).
27.T. Sugimoto, “Preparation of Mono-dispered Colloidal Particles”, Advances in Colliod and Interface Sci., 25, 28 (1987).
28.A. Matthews, “The Crystallization of Anatase and Rutile from Amorphous Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61, 410 (1976).
29.M. Guidi, L. Marini, G. Scandiffio and R. Cioni, “Chemical Geoghermometry in Hydrothermal Aqueous Solutions”, Geothermics, 19(5), 415 (1990).
30.W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”, Ceram. Bull., 67(10), 1673 (1988).
31.R. R. Basca and J. P. Dougherty, “Hydrothermal Synthesis of Barium Titanate Thin Film on Titanium Metal Powder”, J. Mater. Science Letters, 14, 600 (1995).
32.Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and Sintering of Ultrafine BaTiO3 Powders”, J. Mater Res., 8(7), 1784 (1993).
33.Wu Mingmei, Xu Ruren and Shou Hua Feng., “The Influence of Anions on the Products of BaTiO3 Under Hydrothermal Conditions”, J. Mater. Sci., 31, 6201 (1996).
34.S. Wada, T. Suzuki, and T. Noma, "Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization" J. Ceram. Soc. Jpn., 103, 1220-1227 (1995).
35.A. Chittofrati and E.Matijevic, ”Uniform Particles of Zinc-Oxide of Different Morphologies”, Colloids and Surf., 48, 65-78 (1990).
36.史宗淮, 水熱法合成鋇鐵氧磁粉之研究, 國立清華大學化工研究所博士論文 (1991).
37.J. Trindade, D. Pedrosa de Jesus, P. Óbrien, ” The Preparation of Zinc Oxide and Zinc Sulfide Powders by Controlled. Precipitation from Aqueous Solutions”, J. Mater. Chem., 10, 1611 (1994).
38.C. H. Lu., W. J. Hwang, “Preparation of Pb(Zr, Ti)O3-Pb(Ni1/3Nb2/3)O3 powder from hydrothermally-treated precursors”, Mater. Lett., 27, 229 (1996).
39.S. T. Chung, K. Nagata, H. Igarashi, “Thermal hysteresis of pyroelectric signal of LATGS crystals”, Ferroelectrics, 94, 43-47 (1989).
40.呂宗昕, “電子陶瓷之溶液法粉體製備技術”, 化工技術, 9, 34-41 (1993).
41.G. L. Messing, J. L. Mcardle and R. A. Shelleman, “The Need for Controlled Heterogeneous Nucleation in Ceramic Processing”, Mat. Res. Symp. Proc., 73, 471 (1980).
42.A. G. Walton, “The formation and Properties of Precipitates”, John Wiley & Sons, Inc., 6 (1967).
43.D. Elwell and H. J. Schell, “Crystal Growth from High-Temperature Solutions”, Academic Press, Inc., 150 (1975)..
44.T. Sugimoto, “Preparation of Monodispered Colloidal Particles”, Advances in Colloid and Interface Sci., 65, 28 (1987).
45.O. Sohnel and J. Garside, “Precipitaiton”, Botterworth- heinemann, Oxford, UK (1992).
46.汪建民等,“陶瓷技術手冊”, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版 (1994).
47.“行業污染特性手冊第四冊化工類一”, 行政院環保署空氣品質保護與噪音管制處 (1996).
48.Vicenzo Tufano, Maria Turco, “Kinetic Modeling of Nitric-Oxide Reduction over A High-Surface Area V2O5-TiO2 Catalyst”, Appl. Catal. B: Enviro., 2, 9-26 (1993).
49.沈孝宗, 以波洛斯凱特型觸媒催化一氧化氮還原反應之比較研究, 國立成功大學化工研究所博士論文 (1998).
50.楊士瑩, 黏結劑對錳鋅鐵氧磁體粉末燒結及燒結體性質之影響, 國立成功大學材料科學及工程學系 (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top