跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍國峰
研究生(外文):Guo-Feng Lan
論文名稱:Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究
論文名稱(外文):A Study on the Vibration Fracture Characteristics of Sn-Zn-xAg Lead-Free Solder Alloys
指導教授:呂傳盛呂傳盛引用關係陳立輝陳立輝引用關係
指導教授(外文):Truan-Sheng LuiLi-Hui Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:72
中文關鍵詞:振動破壞機械性質無鉛銲錫錫鋅銀系合金
外文關鍵詞:Sn-Zn-xAg alloylead-free soldermechanicalvibration fracture
相關次數:
  • 被引用被引用:8
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本研究進行Sn-Zn-xAg (x=0.5, 1.0, 1.5, 2.5, 3.5wt%)無鉛銲錫合金之機械性質探討,主要著重在振動破壞特性方面。研究內容包括(1)Ag含量、凝固速率及自然時效對微觀組織與機械性質之影響。(2)探討Ag含量及振動測試條件對振動破壞特性,包括制振性及裂縫傳播的影響。
實驗結果顯示,0.5Ag試材之組織與Sn-Zn共晶組織相近,基地中散佈小而多的富Zn相,其強度最高。隨Ag含量的增加,尺寸較大的Ag-Zn化合物及初晶Sn生成,而有強度、彈性係數下降以及延性上升的趨勢。於較高Ag試材(1.5Ag~3.5Ag)中,強度及延性均相當接近。此外,在相同Ag含量時,提升凝固速率有助於組織細化及強度提高,同時亦可將針棒狀富Zn相圓鈍化成圓棒狀,使得延伸率較佳。
振動試驗中,各試材之D-N 曲線可分成偏移量上升、持平以及下降三個區域。在固定振動出力值時,起始偏移量隨Ag含量增加而下降,高Ag試材(1.5Ag、2.5Ag及3.5Ag)偏移量則相當近似。共振壽命方面則與起始偏移量趨勢相反,隨Ag含量增加而上升,高Ag者之共振壽命相似。此外,固定起始偏移量之振動實驗結果顯示,當設定在高偏移量(1.8mm)時,高Ag試材之壽命較佳,而當設定為低偏移量(1.05mm)時,所有試材之D-N曲線約略相當。
經振動測試之各組成試片表面均可觀察到富Sn相層狀變形特徵,可分為纖維型(由Sn-Zn共晶組織中之富Sn相所形成)與波浪型(由初晶Sn所形成)兩種,且波浪型較纖維型易於生成。0.5Ag試片因為接近Sn-Zn共晶組織,主要為纖維型層狀變形,隨Ag含量增加及初晶富Sn相的出現,變形組織轉為波浪型。在相同振動出力值下,層狀變形區域隨著Ag含量增加而變寬,與對數衰減率(制振性)趨勢成正比,證實本系統合金制振行為與層狀變形關係密切。
此外亦發現,振動初期及裂縫傳播過程中所形成之層狀變形可提高裂縫轉折度及裂縫傳播阻抗,因而延長共振壽命。此外,高Ag試材中生成之Ag-Zn化合物亦有阻擋裂縫的前進,增加傳播阻抗的效應。
Mechanical properties of Sn-Zn-xAg (x=0.5, 1.0, 1.5, 2.5, 3.5wt%) were examined in this study, particularly the resonant vibration fracture behaviors. The study items were (a) effects of Ag content, solidification rate and naturally aging on the microstructure and mechanical properties, and (b) influences of Ag content and vibration testing conditions on the resonant vibration behaviors, including damping capacity and crack growth.
Based on the tensile test results, the 0.5Ag specimens possessed a near Sn-Zn eutectic structure with large amounts of fine Zn-rich phase particles and the highest tensile strength. Massive Ag-Zn compounds and primary Sn-rich dendrites could be observed in the specimens with higher Ag content and their amounts increased with increasing Ag content. This led to higher ductility, lower strength and elastic modulus. Also, the tensile properties, elongation and strength, were similar in the specimens with higher Ag content of 1.5wt%~3.5wt%. In addition, the specimens with a higher solidification rate had better tensile properties due to the fine structure and modified Zn-rich particles.
The D-N curves (deflection amplitude vs. numbers of vibration cycle) could be divided into an initial stage with ascending deflection amplitude, and the second stage whose deflection kept constant, and then the last stage with a descending deflection amplitude. With a constant vibration force, the initial deflection increased and the vibration life decreased with a lower Ag content, and the 1.5Ag, 2.5Ag and 3.5Ag specimens exhibited similar deflection amplitude and critical cyclic numbers to failure. Moreover, the results of vibration tests with the settled initial deflection display that vibration life of the specimens with higher Ag contents were longer when testing under the higher deflection of 1.8 mm, while all the specimens showed resembling D-N curves when testing under the lower deflection of 1.05 mm.
The damping mechanism of the alloys in this study can be confirmed to be closely related the striated deformation of Sn-rich phase. The striated deformation feature could be found on the specimen’s surface suffering vibrating and it could be identified as the fiberous type in Sn-Zn eutectic and wavy type in primary Sn-rich dendrites. The fiberous striated deformation was more difficult to form and could be almost found in the 0.5 Ag sample. The striated deformation became wavy in the high Ag specimens with Sn-rich dendrities. Under the identical vibration push force, 1.5Ag, 2.5Ag, 3.5Ag specimen showed broader striated deformation region, excellent damping capacity and thus better resonant vibration life.
In addition, the striated deformation formed during the vibration process can enhance crack tortuosity and stunt crack propagation. The hard Ag-Zn compound also contributed to the crack propagation resistance.
中文摘要……………………………………………………………….…I
英文摘要……………………………..…………………………………III
總目錄….……………………..…………………………………………V
表目錄……….…………………………………………………………VII
圖目錄….…………………………………………..…………………VIII
第一章 前言…………………………………………….…….…….…...1
第二章 文獻回顧………………………………………………………..3
2-1 軟銲(Soldering)技術與銲錫材料………....…………….………3
2-2 銲錫合金系統……………………………………………………4
2-3 振動特性…………………………………………………………6
2-3-1 共振狀態……..……………………..…..………………....6
2-3-2 制振性………………………………………………..…….7
2-3-3 振動破壞特徵………………………………………..…….9
2-3-4 裂縫傳播行為…………………….…..…………….…….11
第三章 實驗方法………………………………………………………18
3-1 合金熔煉及澆鑄試片………….……………………….………18
3-2 金相觀察及定量解析………..…………………..……………..18
3-3 硬度試驗.….………….……..………………………………….19
3-4 拉伸試驗..…………….………………………..……………….19
3-5 振動破壞試驗……….………………………..………………...19
3-5-1 振動試片尺寸及設備……………..………….……..……19
3-5-2 振動疲勞測試及裂縫路徑解析…....………..…….……..20
3-5-3 對數衰減率(Logarithmic Decrement, δ)之量測……..…21
3-6 研究架構……..……………………..…………………………..21
第四章 實驗結果………………………………………………………28
4-1 Ag含量及凝固速率對顯微組織之影響…….……………….28
4-2 Ag含量、凝固速率及自然時效對機械性質之影響..……….29
4-2-1 硬度性質…………………………………………..…..….29
4-2-2 拉伸性質…………….…………………………………...29
4-3 Ag含量對振動破壞特性之影響……..…..…………………..30
4-3-1 對數衰減率及D-N曲線特徵…..………..…….…..…….30
4-3-2 巨觀組織、表面裂縫及破斷面解析…………..……..…...31
第五章 討論…………………………………………………….……...58
5-1 晶出第二相與機械性質之關係…………….………………….58
5-2 Sn-Zn-xAg合金共振壽命……………………………….……59
5-3 層狀變形與晶出第二相對振動破壞特性之影響..…….…..…60
5-3-1對制振性之影響………..…………..…….………………60
5-3-2 對裂縫傳播之影響……………………....…...……..……61
第六章 結論………………………..……………………………….….66
參考資料………………………………………..………………………68
1.W. J. Plumbridge, “Review Solders in Electronic”, J. Mater. Sci., 1996, Vol. 31, pp. 2501-2514.
2.S. S. Kang and A. K. Sarkhel, “Lead Free Solders for Electronic Packaging”, J. Elec. Mater., 1994, Vol. 23, pp. 701-707.
3.J. Glarzer, “Microstructure and Mechanical Properties of Pb-Free Solder Alloys for Low-Cost Electronic Assembly: A Rewiew”, J. Elec. Mater., 1994, Vol. 23, pp. 693-700.
4.張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,民國84年,第12期,17-18頁。
5.B. Trumble, “Get the LEAD out”, IEEE Spectrum, May 1998, pp. 55-60.
6.賴玄金,“從IPC Work’99 會議中看無鉛銲錫電子構裝之應用現況與發展趨勢”,工業材料,民國89年,第158期,99-107頁。
7.P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, July 1993, Vol. 45, No. 7, pp.14-19.
8.K. Seeling, “A Study of Lead-Free Solder Alloys”, Circuits Assembly, 1995, Vol. 6, No. 10, pp. 46-48.
9.N. -C. Lee, “Getting Ready for Lead-Free Solders”, Soldering and Surface Mount Tech., July 1997, No. 26, pp. 65-68.
10.M. McCormack and S. Jin, “Progress in the Design of New Lead-Free Solder Alloys”, JOM, July 1993, Vol. 45, No. 7, pp. 36-40.
11.M. McCormack and S. Jin, "New, Lead-Free Solders", J. Electron. Mater., 1994, Vol. 23 No. 7, pp. 635-640.
12.E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders”, 1994, Vol. 23, No. 8, pp. 709-713.
13.T. Takemoto, T. Funaki, and A. Matsunawa, “Electrochemical Investigation on the Effect of Silver Addition on Wettability of Sn-Zn System Lead-Free Solder”, Journal of Japan Welding Society, 1999, Vol. 17, No. 2, pp. 251-258.
14.S. Vaynman, M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, 1999, Vol. 41, No. 12, pp. 1269-1271.
15.Q. J. Yang, H. L. J. Pang, Z. P. Wang, G. H. Lim, F. F. Yap, R. M. Lin, “Vibration reliability characterization of PBGA assemblies” Microelectronic Reliability 40, 2000, pp. 1097-1107.
16.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., 1993, Vol. 8, pp. 2216-2223.
17.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, 1995, Vol. 26A, pp. 1123-1127.
18.J. Glazer, “Metallurgy of Low Temperature Pb-Free Solders for Electronic Assembly”, International Mater. Rev., 1995, Vol. 40, pp. 65-93.
19.Katsuaki Suganuma, “Advances in lead-free electronic soldering”, Current Opinion in Solid State and Material Sciences 5, 2001, pp. 55-64.
20.B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys”, Welding Res., Oct., 1976, pp. 330s-340s.
21.Y. Miyazawa and T. Ariga, “Influences of Aging Treatment on Microstructure and Hardness of Sn- (Ag, Bi, Zn) Eutectic Solder Alloys”, Mater. Trans, JIM, 2001, Vol. 42, pp. 776-782.
22.殷翠梅,“Sn-Ag系無鉛銲錫之振動破壞特性探討”,國立成功大學材料科學及工程學系,碩士論文,民國90年。
23.莊強名, “無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
24.J. N. Hu, H. Tanaka and T. Narita, “Aging Behavior of a Sn-Bi Eutectic solder at Temperatures between 233 and 373K”, Mater. Trans, JIM, 2001, Vol. 42, pp. 769-775.
25.K. Kawashima, T. Ito and M. Sakuragi, “Strain-Rate and Temperature-Dependent Stress-Strain Curves of Sn-Pb Eutectic Alloy”, J. Mater. Sci., 1992, Vol. 27, pp. 6387-6390.
26.ASM handbook, Hugh Baker, ASM International, Materials Park, Ohio, 1992, Vol. 3 Alloy Phase Diagrams.
27.K. Suganuma, T. ShotoKu, Y. Nakamura and K. Niihara, “Wetting and Interface Microstructure between Sn-Zn Binary Alloys and Cu”, J. Mater. Res., 1998, Vol. 13, pp. 2859-2865.
28.F. Hua and J. Glazer, “Lead-Free for Electronic Assembly”, Design & Reliability of Solders and Solder Interconnections, 1997, TMS Annual Meeting, pp. 65-73.
29.S.Karlhuber, M. Peng, A.Mikula, “Thermodynamic properties of ternary liquid zinc-alloys”, Journal of Non-Crystalline 205-207, 1996, pp.421-424.
30.Materials Science and Engineering: An Introduction, William D. Callister, Jr., John Wiley & Sons, Inc., New York, 2000, 5th ed.
31.A. Sebaoun, D. Vincent and D.Treheux, “Al-Zn-Sn phase diagram-isothermal diffusion in ternary system ”, Materials Science and Technology, April 1987, Vol.3, pp.241-248.
32.C. M. Chuang, T. S. Lui, L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aging Sn-Zn Eutectic solder”, J. Materials Science, 2002, Vol. 37, pp. 191-195.
33.M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Elec. Mater., 1994, Vol. 23, pp. 687-690.
34.Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Company, Inc., 1990, 2nd ed., pp.4-160.
35.C. Y. Tang, M. Jie, W. Shen and K. C. Yung, “The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage”, Scripta Metall. Mater., 1998, Vol. 38, pp. 221-238.
36.振動與噪音的阻尼控制,孫慶鴻、張啟軍、姚慧珠編著,機械工業出版社,北京,1992,38-57頁。
37.A. Granato K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., 1956, Vol. 27, pp. 583-593.
38.S. E. Urreta De Pereyre, A. A. Ghilarducci De Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol., 1993, Vol. 139, pp.345-360.
39.J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., 1993, Vol.28, pp. 2395-2404.
40.R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., 1993, Vol. 24A, pp. 701-711.
41.E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix composites”, Metall. Mater. Trans., 1995, Vol. 26A, pp. 2803-2818.
42.M. Okabe, T. Mori and T. Mura, “Internal Friction caused By Diffusion Around a Second-Phase Particle Al-Si Alloy”, Phil. Mag. A, 1981, Vol. 44, pp. 1-12.
43.A. Wolfenden, L. S. Cook, J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”, M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V. K. Kinra and A. Wolfenden Eds., American Society for Testing and Materials Philadelphia, 1992, pp. 124-141.
44.K. Suganuma, S. H. Huh, K. Kim, H. Nakase and Y. Nakamura, “Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder” Mater. Trans, JIM, 2001, Vol. 42, pp. 286-291.
45.洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
46.Fatigue Threshold, D. Taylor, Butterworth and Co. Ltd, 1989, pp. 71-91.
47.Fatigue of Materials, S. Suresh, Cambridge University Press. New York, 1991, pp. 292.
48.S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., 1983, Vol. 14A, pp. 2375-2385.
49.W. Elber, “ Fatigue-Crack Closure under Cyclic Tension”, Eng. Fract. Mech., 1971, Vol. 2, pp. 37-45.
50.S. H. Wang, C. Muller and H. E. Exner, “A Model for Roughness-Induced Fatigue Crack Closure”, Metall. Mater. Trans A, 1998, Vol. 29A, pp. 1933-1939.
51.S. Suresh, “Fatigue Crack Deflection and Fracture Surface Contact: Micromechanical Models”, Metall. Trans. A, 1985, vol. 16A, pp. 249-260.
52.W. J. Drury, A. M. Gokhale and S. D. Antolovich, “Effect of Crack Surface Geometry on Fatigue Crack Closure”, Metall. Trans. A, 1995, Vol. 26A, pp. 2651-2663.
53.A. J. Padkin, M. F. Brereton and J. E. King, “Fatigue Crack Growth in Two Phase Alloys”, Mater. Sci. Tech., 1987, Vol. 3, pp. 217-223.
54.D. M. Knowles and J. E. King, “Role of Reinforcement/Matrix Interfacial Strength in Fatigue Crack Propagation in Particulate SiC Reinforced Aluminum Alloy 8090”, Mater. Sci. Tech., 1992, Vol. 8, pp. 500-509.
55.C. Masuda and Y. Tanaka, “Fatigue Properties and Fatigue Fracture Mechanisms of SiC Wiskers or SiC Particlate-Reinforced Aluminum Composites”, J. Mater. Sci., 1992, Vol. 27, pp. 413-422.
56.S. Kumai, J. E. King and J. F. Knott, “Fatigue in SiC- Particulate-Reinforced Aluminum Alloy Composites”, Mater. Sci. Eng., 1991, Vol. A146, pp. 317-326.
57.J. J. Mason and R. O. Ritchie, “Fatigue Crack Growth Resistance in SiC Particulate and Whisker Reinforced P/M 2124 Aluminum Matrix Composites”, Mater. Sci. Eng., 1997, Vol. A231, pp. 170-187.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top