跳到主要內容

臺灣博碩士論文加值系統

(107.21.85.250) 您好!臺灣時間:2022/01/18 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昱呈
研究生(外文):Yu-Cheng Lin
論文名稱:電泳披覆法製備錳鋅鐵氧磁體鍍膜之研究
論文名稱(外文):Fabrication of Mn-Zn ferrite films by electrophoretic deposition
指導教授:黃啟祥黃啟祥引用關係
指導教授(外文):Chii-Shyang Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:90
語文別:中文
論文頁數:114
中文關鍵詞:電泳披覆超微粉鍍膜錳鋅鐵氧磁體
外文關鍵詞:Mn-Zn ferritenano-powderfilmElectrophoretic Deposition
相關次數:
  • 被引用被引用:11
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:1
摘 要

本研究旨在以製程簡易之電泳披覆法(Electrophoretic Deposition,EPD),將錳鋅鐵氧磁體(Mn-Zn Ferrite)粒子披覆於不鏽鋼基材上。為得良好的披覆膜,本實驗是以奈米錳鋅鐵氧磁體粉末為起始粉末,檢討不同之懸浮液、I2添加量及披覆條件 (懸浮液濃度、電壓、時間、基材面積)對形成披覆膜之影響,以及冷均壓處理對披覆膜燒結性之影響。
實驗結果顯示:(1)以為丙酮懸浮液溶劑時,其披覆效果較乙醇佳,(2)在I2濃度未超過0.3 g/L時,披覆層之重量隨懸浮液中的碘的含量之增加而增加。 (3)以丙酮為溶劑時,其披覆重量是隨施加電壓強度之增加而成正比的關係。(4) 經冷均壓(CIP)處理披覆膜可變為較緻密,且在經65MPa以上壓力的CIP處理後,其緻密度幾乎不變;其在氮氣氣氛中900℃燒結2h後,形成一無孔洞的燒結體披覆膜。(5) 以分次披覆及在較慢的升溫速率(2℃/min)下燒結,可得一較無裂紋的鍍膜燒結體。(6) 以分6次重複披覆之鍍膜在升溫速率為2℃/min,900℃ x 2 h燒結下所得燒結體,有最佳之飽和磁化量5.38 emu/cc。(7) 矯頑磁力是隨燒結體晶粒之增加而變小;經CIP處理後之試樣,因晶粒較小導致矯頑磁力較大。
Electrophoretic Deposition (EPD) technique has demonstrated to be rather effective for fabrication of ceramic thick films. There are several advantages involved in this process such as process simplicity, low equipment cost, readiness for depositing on conductive substrates with complex shapes, and fast deposition rate as compared to PVD or CVD process. The aim of this study is to form the Mn-Zn ferrite films on stainless steel substrates by EPD process. Mn-Zn ferrite nanopowders were prepared via a hydrothermal route. The effect of process parameters including solvent properties of EPD suspension of ethanol and acetone, I2 additive amount, suspension concentration on Mn-Zn ferrite the formation of film formation, applied voltage, deposition time, and size of electrode substrate, and the effect of cold isostatic pressing (CIP) treatment on the sinterability of the films were investigated.
The deposition efficiency associated with using acetone, instead of ethanol, as solvent in EPD suspensions was reasonably good. The deposition weight per unit area increases as increasing the amount of I2 additive in EPD suspensions before the I2 concentration is over 0.3 g/L. It was a linear relationship between the applied voltage and specific deposition weight as using acetone solvent in suspension. The CIP process was proved to be helpful for enhancing the density of the deposited films, however, the increased density of films did not show for CIP pressure higher than 65MPa. The specimen sintered at 900℃ for 2h in N2 was of lower porosity. The films from repeated depositions showed no cracks in sintered sample by using lower heating rate (2℃/min). The films from six repeated EPD depositions had better magnetic property for its saturation magnetization was 5.38 emu/cc. The coercivity normally drops off with grain growth in sintered sample, therefore, the samples with extra CIP procedure for impeding grain growth showed greater coercive force.
目錄

中文摘要......................................................................I
英文摘要......................................................................II
目錄.............................................................................IV
表目錄.........................................................................VIII
圖目錄.........................................................................IX
第一章 緒論..............................................................1
1-1前言...........................................................................1
1-2 研究目的..................................................................3
第二章 理論基礎及文獻回顧........................................4
2-1尖晶石型鐵氧磁體……………………………………4
2-2 水熱合成法..............................................................5
2-2-1 水熱合成法之原理...........................................5
2-2-2 水熱法製備粉體之優點....................................6
2-3 電泳法............................................................6
2-3-1電泳法之原理.........................................6
2-3-2電泳披覆法之優點.........................................7
2-3-3電泳技術之發展及應用....................................8
2-4定電壓與定電流電泳披覆........................................10
2-5電雙層..........................................................12
2-5-1膠體表面電荷之起源..........................................13
2-5-2電雙層中之內電荷層.............................................14
2-5-3 Stern層電位及電動位能…………………….17
2-6磁性理論………………………….……………….17
2-6-1磁性的分類…………………………………...17
2-6-2磁滯曲線的產生…………………..……….19
2-6-3初導磁係數………………………………..20
2-6-4損失與共振…………………………….21
2-6-5矯頑磁力………………………………..21
2-6-6形狀異向性………………………………….22
2-6-7磁性異向性…………………………………22
2-6-8微粒子的矯頑磁力…………………………..22
第三章 實驗步驟與方法..............................................32
3-1粉末的製備及粉體的特性分析........................32
3-1-1 起使粉末製備流程.................................................32
3-1-1-1 起始原料.....................................................33
3-1-1-2 混合.................................................................33
3-1-1-3水熱處理..........................................................33
3-1-1-4 離心、乾燥......................................................34
3-1-2粉末特性分析及實驗設備…………….…………34
3-1-2-1 X光繞射儀…...………………………………34
3-1-2-2 自動氣相物理吸附儀.................................34
3-1-2-3 結晶型態分析...............................................35
3-1-2-4感應輛電漿原子放射光譜分析....................35
3-2懸浮液的製備及電泳披覆….........................................36
3-2-1懸浮液的配置...................................................37
3-2-2電泳披覆.......................................................37
3-2-2-1基材之前處理...................................................37
3-2-2-2 電泳披覆製程參數之控制............................38
3-3-2-3冷均壓成形法(CIP)......................................38
3-3 燒結..............................................................................39
3-4 性質分析及實驗設備....................................................39
3-4-1懸浮液特性分析................................................39
3-4-1-1 Zeta電位的量測..........................................39
3-4-1-2 粒徑分佈....................................................40
3-4-2 燒結性質.........................................................41
3-4-2-1燒結收縮(DHT).............................................41
3-4-3電泳披覆鍍膜之微結構及磁性質分析..…..……42
3-4-2-1掃瞄式電子顯微鏡(SEM)……………………42
3-4-3-2超導量子干涉磁量儀(SQUID)……...……….42
第四章 結果與討論......................................................57
4-1 起始粉末的合成及性質…………………………….57
4-2 EPD懸浮液……………..……………………………57
4-3 電泳披覆製程參數的控制…………………………59
4-3-1 懸浮液濃度之影響……………………………...60
4-3-2 施加電壓對電泳披覆的影響…………………..60
4-3-3 披覆時間對電泳披覆的影響………………….61
4-3-4 碘添加量對電泳披覆的影響…………………..61
4-3-5 基板面積對電泳披覆的影響…………………..62
4-3-6 冷均壓(CIP)處理對電泳披覆的影響………….63
4-4 燒結……………………….……………………….63
4-4-1相分析…………………………………………....63
4-4-2 燒結收縮曲線…………………………………...63
4-4-3 顯微結構………………………………………..64
4-5磁性質………………………………………………...66
4-5-1 飽和磁化量…………………………………….66
4-5-2矯頑磁力…………………………………………67
第五章 結論................................................................103
參考文獻.....................................................................105
參考文獻

[1]P. I. Slick, “Ferrites for non-microwave applications,” inFerromagnetic Materials, 2, ed. by E. P. Wohlfarth (North-Holland Press, New York, 189-241 (1980).
[2]E. C. Snelling, IEEE spectrum 9[1] 46-49 (1972)
[3]J. A. T. Taylor, S.T. Reczek and A. Rosen, “Soft Ferrite Processing,” J. Am. Ceram. Soc. Bull., 74[4] 91-94 (1995).
[4] M. Gupta and C. Y. Loke, “Micromechanical Modeling of Processing-induced damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique,” Materials Research Bulletin, 34, 71-79 (1999)
[5] T. S. Chin, “Permanent Magnet Films for Applications in Microelectromechechanical Systems,” J. Magn. Magn. Mater. 209, 75-79 (2000)
[6] J. Feng, N. Matsushita, K. Watanabe, S. Nakagawa, and M. Naoe, “Al substituted Ba ferrite films with high coercity and excellent squareness for low noise perpendicular recording layer ,” J. Appl. Phys. 85, 6139-6141 (1999)
[7]宋小敏, “積層晶片電感元件製作,” 工業材料 第88期 66-71,83年4月
[8] M. Abe and Y. Tamaura, ”Ferrite Plating in Aqueous Solution : New Technique for Preparing magnetic Thin Film,” J. Appl. Phys. 55, 2614-2616 (1984)
[9] M. Abe, T. Itoh and Y. tamaura, ”Magnetic and biomagnetic films obtained by ferrite plating in aqueous solution,” Thin Solid Films, 216, 155-161 (1992)
[10] Soichiro Okamura, Takeyo Tsukamoto and Nobuyuki Koura, ”Fabrication of Elerroelectric BaTiO3 Films by Electrophoretic Deposition ,” Jan. J. Appl. Phys., 32, 4182-4185 (1993)
[11] T. Ishihara, K. Sato and Y. Takita, ”Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells,” J. Am . Ceram. Soc. 79 [4], 913-919 (1996)
[12] M. P. Horvath,” Microwave applications of soft ferrites, “J. Magn. Magn. Mater. 215, 171-183 (2000)
[13] 洪永泰, “電泳披覆法製作積層PZT壓電致動器之電極表面絕緣層,” 逢甲大學材料科學研究所碩士論文,1996
[14] J. Van Tassel and C. A. Randall, “Electrophoretic Deposition and Sintering of Thin/Thick PZT Films,” J. of Euro. Ceram. Soc., 19, 955-958 (1999)
[15] P. S. Nicholson and P. Sarkar, “Electrophoretic Deposition and its use to synthesize Al3O3/ZrO2 Micro-Laminate ceramic/ceramic Compositite,” J. of Materials Science, 28 , 6274-6278 (1993)
[16] M. Suzuki , H. Yamato and M. Matsumura , ”Characterization of YBa2Cu3O7-X Layers Prepared by Electrophoretic Deposition,” J. Electrochem. Soc., 138 [10] 2942-2946 (1991)
[17] M. Hein, G. Muller, H. Piel and L. Ponto, ”Electrophoretic deposition of textured YBa2Cu3O7-x films on silver substrates,” J. Appl. Phys. 66 [12] 5940-5943 (1989)
[18] C. T. Chu and B. Dunn, ”Fabrication of YBa2Cu3O7-x superconducting Coatings by Electrophoretic Deposition,” Appl. Phys. Lett., 55 [5] 492-494 (1989)
[19] J. Mizuguchi, M. Sukuki, H. Yamato and M. Matsumura, ” Characterization of YBa2Cu3O7-2 Layers Prepared by Electrophoretic Deposition,” J. Electrochem. Soc., 138[10] 2944-2946 (1991)
[20] H. Hojims, H. Sukuki, H. Yamato and M. Matsumura,”Fabrication of Ag-Doped YBa2Cu3O7-x Superconducting Films on Cu Substrates by Electrophoretic Deposition,” Japanese J. Appl. Phys., 30[7A] L1166-1168 (1991)
[21] A. A. Foissy and G. Robert,”Electrophretic Forming of Beta-Alumina from Dichloromethane Suspensions,” Ceramic Bulletin, 6[2] 251-255 (1982)
[22] R. W. Powers, “Ceramic Aspects of Forming Beta-Alumina by Electrophoretic Deposition,” Ceramic Bulletin , 65[9] 1270-1275 (1986)
[23] R. W. Powers, ”Powder Requirements for Beta-Alumina Ceramnic Formed by Electrophoretic Deposition,” Ceramic Bulletin, 65[9] 1275-1281 (1986)
[24] H. A. Fisch, ”Electrophoretic Deposition of Aluminide Coatings form Aqueous Suspensions,” Ceramic Bulletin, 11[9] 275-286 (1990)
[25] D. U. K. Roa and E. C. Subbarao, “Electrophoretic Deposition of Magnesia”, Ceramic Bulletin, 58[4] 467-469 (1979)
[26] F. Hosseinbabaei and B. Raissidehkordi, ”Electroretic deposition of MgO thick films from an acetone suspension,” J. Euro. Ceram. Soc. 20, 2165-2168 (2000)
[27] F. Chen and M. Liu, ”Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM-YSZ substrates using an electrophoretic deposition (EPD) process, ”J. Euro. Ceram. Soc. 21, 127-134 (2001)
[28] 汪建民等,陶瓷技術手冊, 經濟部技術部、中華民國粉末冶金學會、中華民國產業發展協進會出版,1994年7月.
[29] A. R. Von Hipsel, Dielectrics and Waves, John Wiley & Sons, New York, 1954
[30] William J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders,” Ceramic Bulletin, 67[10] 1673-1678, (1988).
[31] S. Wada, T. Suzuki and T. Noma, ”Influence of Gravity on Inorganic Crystalline Particle Growth under High Temperature-High Pressure Aqueous Solution,” Jpn. J. Ceram. Soc., 103[12] 1220, (1995).
[32] A. Chittofratt and E. Matijevic, “Uniform particles of zinc-oxide of different morphologies,” Colloids and Surface., 48[1] 65-78 (1990).
[33] T. Trindate, J. D. Pedrosa de Jesus and P.O. Brien, “Preparation of zinc-oxide and znic-sulfide powders by controlled precipitation from aqueous-soultion,” J. Mater. Chem., 4[10] 1611-1614 (1994).
[34] M. Hinaro and E. Kato, “Hydrothermal synthesis and sintering of fine powders in CeO2-ZrO2 system,” J. Am. Ceram. Soc., 79[3], 777-780 (1996).
[35] E. Tani, M. Yoshimura and S. Somiya, Chapman and Hall Ltd., 461, (1982).
[36] Y. C. Chou and M. N. Rahaman, “Hydrothermal synthesis and sintering of ultrafine CeO2 powders,” J. Mater. Res., 8[7] 1680-1684 (1993).
[37] Hunter, R. J., Zeta Potential in Colloid Science, Academic Press (1981).
[38] F. F. Reuss, Notice sur un nouvel Effect de 1’electrite gavanique. Mem. Soc. Imp. Natur. Moscou , 2 ,327-337 (1809)
[39]黃琇芳, ”電泳塗裝技術,” 化工技術, 10 [4] 49-52 (1986)
[40] S. N. Heaven, ”Electrophoretic Deposition as a Processing Route for Ceramics,” in Advanced Ceramic Process and Technology, J.G.P. Binner (Ed.), 1,Noyes Publications, 255-283 (1990)
[41] H. A. Fisch, ”Electrophoretic Deposition of Aluminide Coatings from Aqueous Suspensions,” J. Electrochem. Soc., 119[1] 57-64 (1975)
[42] Z. R. Ulberg and Y. F. Deineged, Electrophoretic Composite Coatings, Ellis Horwood, New York, 35-84 (1992)
[43] J. Mizuguchi, K. Sumi and T. Muchi, “A Highly Stable Nonaqueous Suspension for the Electrophoretic Deposition of Powdered Substances,” J. Electrochem. Soc., 130[9] 1819-1825 (1983)
[44] C. Y. Chen, S. Y. Chen and D. M. Liu, “Electrophoretic Deposition Forming of Porous Alummin Membranes,” Acta Mater. 47[9] 2717-2726 (1999)
[45] M. Nagai, K. Yamashita, T. Umegaki and Y. Takuma, “Electroretic Deposition of Ferroelectric Barium Titanate Thick Films and Their Dilectric Properties,” J. Am. Ceram., 76 [1] 253-255 (1993)
[46] R. Thomas, D. C. Dube, M. N. Kamalasanan and S. Chandra, “Optical and electrical properities of BaTiO3 thin films prepared by chemical solution deposition,” Thin Solid Films, 346, 212-225 (1999)
[47] S. Sugiyama, A. Takagi and K. Tsuzuki, “(Pb,La)(Zr,Ti)O3 Films by Multiple Electrophoretic Deposition/Sintering Processing,” Jan. J. Appl. Phys., 30[9B] 2170-2173 (1991)
[48] P. Sarkar, S. Mathur, P. S. Nicholson and C. V. Stager, “ Fabrication of Textured Bi-Sr-Ca-Cu-O Thick Film by Electrophoretic Deposition,” J. Appl. Phys., 69[3] 1775-1777 (1991)
[49] R. Chaim, G. stark and Gal Or, “Electrochemical ZrO2 and Al2O3 Coatings on Substrates,” J. of Materials Science, 29, 6241-6248 (1994)
[50] P. Sarkar, X. Huang and P. S. Nichilson, “Zircona Alumina Functionally Gradiented Composite by Electrophoretic Deposition Techniques,” J. Am. Ceram. Soc., 76[4] 1055-1056 (1993)
[51] Luc Vandeperre, Omer Van Der and J. Persello, “Electrophoretic Forming of Silicon Carbide Ceramic,” J. of Euro. Ceram. Soc., 17, 373-376 (1996)
[52] F. Harbach and H. Nienburg, “Homogeneous Functional Ceramic Components through Electrophoretic Deposition from Stable Colloidal Suspensions Beta-Alumina and Concepts for Industrial Production,” J. of Euro. Ceram. Soc., 18, 685-692 (1998)
[53] Luc Vandeperre and Omer Van Der, “SiC-Graphite Laminates Shaped by EPD,” Ceramic Bulletin, 78[3] 53-58 (1998)
[54] A. Sussman and T. J. Ward, “Electropheretic Deposition of Coatings from Glass-Isopropanol Slurries,” RCA Review, 42,178-197 (1981)
[55] H. C. Hamaker, “Formation of a Deposit by Electrophoresis,” Trans. Faraday Soc., 36, 287-295 (1940)
[56] H. Koelmans, “Suspensions in non-aqueous media,” Philips Research Reports, 10, 161-193 (1955)
[57] 張有義,郭蘭生,膠體及介面化學入門, 高立圖書有限公司(2001)
[58] D. J. Shaw, Introduction to Colloid and Surface Chemistry, Butterworth-Heinemann (1992)
[59] 楊士瑩, “黏結劑PVA對錳鋅鐵氧磁體粉末燒結及燒結體性質之影響,” 國立成功大學材料科學及工程學系碩士論文 (2001)
[60] 鄭振東,實用磁性材料, 民國88年6月,全華科技圖書股份有限公司出版.
[61] G. R. Harrison and L. R. Jr. Hodges, “Microwave properties of polycrystalline hybrid garnets,” J. Am. Ceram. Soc., 44, 214 (1962)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top