跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/22 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱志偉
研究生(外文):Chih-Wei Chiu
論文名稱:AB與AA型堆疊石墨帶的光譜
論文名稱(外文):Optical Spectra of AB- and AA-Stacked Nanographite Ribbons
指導教授:林明發林明發引用關係
指導教授(外文):Ming-Fa Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:62
中文關鍵詞:光譜奈米石墨帶
外文關鍵詞:Optical SpectraNanographite Ribbons
相關次數:
  • 被引用被引用:1
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:1
AB與AA堆疊的石墨帶有著顯著的吸收峰.
幾何結構包括邊界結構, 石墨帶寬度和堆疊型式, 以及極化方向強烈的關係著石墨帶的光譜.
1.armchair和zigzag十分的不同
2.吸收峰的頻率和數目身受石墨帶的寬度影響 .
3.AB堆疊系統比之AA, 其吸收峰較多且光譜強度較弱.
4.吸收峰具有高度的非等方性,其中AA堆疊系統中的A平行=0與石墨之比較有其相同, 相異處.
The absorption spectra of the AB- and AA-stacked nanographite ribbons have several prominent peaks. They strongly depend on the edge structure, the ribbon width, the stacking sequence, and the polarization direction.
The armchair ribbons quite differ from the zigzag ribbons. The frequency and the number of the absorption peaks are affected by the ribbon width. The AB-stacked systems have lower threshold absorption frequency, more absorption peaks, and weaker spectral intensity, as compared with the AA-stacked systems. The absorption spectra are highly anisotropic. The optical excitations of the parallel polarization are absent in the AA-stacked systems. comparison with graphite is discussed.
Contents

Abstract

I. INTRODUCTION
…………………………………………2
II. THE π-ELECTRONIC
STRUCTURES
…………………………………………5
III. THE OPTICAL ABSORPTION
SPECTRA
………………………………………..14
IV. CONCLUDING REMARKS
………………………………………..25

Appendixes

APPENDIX A
……………………………………….30
APPENDIX B
……………………………………….32
APPENDIX C : Programs
……………………………………….33
APPENDIX D : Electronic Specific Heat
of Nanographite Ribbons
……………………………………….54
1.Iijima, Nature 354, 56 (1991).
2.M. Murakami, S. Iijima, and S. Yoshimura, J. Appl. Phys. 60, 3856 (1986).
3.M. Yudasaka, Y. Tanaka, M. Tanaka, H. Kamo, Y. Ohki, and S. Usami, Appl. Phys. Lett. 64, 3237 (1994).
4.H. Kajii, K. Yoshino, T. Sato, and T. Yamabe, J. Phys. D: Appl. Phys. 33, 3146 (2000).
5.M. Fujita, M. Igami, and K. Nakada, J. Phys. Soc. Jpn. 66, 1864 (1997).
6.M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
7.K. Nakada, M. Fujita, G. Dresselhaus, and M. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
8.R. Ramprasad, P. V. Allmen, and L. R. C. Fonseca, Phys. Rev. B 60, 6023 (1999).
9.T. Kawai, Y. Miyamoto, O. Sugino, and Y. Koga, Phys. Rev. B 62, 16349 (2000).
10.Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev. B 59, 9858 (1999).
11.F. L. Shyu, M. F. Lin, C. P. Chang, R. B. Chen, J. S. Shyu, Y. C. Wang, and C. H. Liao, J. Phys. Soc. Jpn. 70, 3348 (2000) (band structures of armchair ribbons in this paper have numerical errors; they would be revised).
12.K. Nakada, M. Igami, and M. Fujita, J. Phys. Soc. Jpn. 67, 2388 (1998).
13.M. F. Lin, M. Y. Chen, and F. L. Shyu, J. Phys. Soc. Jpn. 70, 2513 (2001).
14.K. Wakabayashi, M. Sigrist, and M. Fujita, J. Phys. Soc. Jpn. 67, 2089 (1998).
15.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
16.K. Harigaya, J. Phys.:Condens. Matter 13, 1295 (2001); Chem. Phys. Lett. 339, 23 (2001); ibid, 340, 123 (2001).
17.Y. Shibayama, H. Sato, T. Enoki, and M. Endo, Phys. Rev. Lett. 84, 1744 (2000).
18.O. E. Andersson, B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, M. Yoshikawa, and S. Bandow, Phys. Rev. B 58, 16387 (1998).
19.B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, P. C. Eklund, K. Oshida, and M. Endo, Phys. Rev. B 62, 11209 (2000).
20.B. L. V. Prasad, H. Sato, T. Enoki, Y. Hishiyama, Y. Kaburagi, A. M. Rao, G. U. Sumanasekera, and P. C. Eklund, Phys. Rev. B 64, 235407 (2001).
21.Y. Shibayama, H. Sato, T. Enoki, X. X. Bi, M. Dresselhaus, and M. Endo, J. Phys. Soc. Jpn. 69, 754 (2000).
22.K. Takai, H. Sato, T. Enoki, N. Yoshida, F. Okino, H. Touhara, and M. Endo, J. Phys. Soc. Jpn. 70, 175 (2001).
23.K. Wakabayashi, and M. Sigrist, Phys. Rev. Lett. 84, 3390 (2000); K. Wakabayashi, Phys. Rev. B 64, 125428 (2001).
24.K. Tada, and K. Watanabe, Phys. Rev. Lett. 88, 127601 (2002).
25.M. F. Lin, and F. L. Shyu, J. Phys. Soc. Jpn. 69, 3529 (2000).
26.C. W. Chiu, M. F. Lin, and F. L. Shyu, Physica E 11, 356 (2001).
27.J. G. Johnson, and G. Dresselhaus, Phys. Rev. B 7, 2275 (1973).
28.R. Ahuja, S. Auluck, J. M. Wills, M. Alouani, B. Johansson, and O. Eriksson, Phys. Rev. B 55, 4999 (1997).
29.E. A. Taft, and H. R. Philipp, Phys. Rev. 138, A197 (1965).
30.J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43, 4579 (1991).
31.J. C. Charlier, J. P. Michenaud, and X. Gonze, Phys. Rev. B 46, 4531 (1992).
32.J. C. Charlier, J. P. Michenaud, X. Gonze, and J. P. Vigneron, Phys. Rev. B44, (1991) 13237.
33.G. D. Mahan, Many-Particle Physics (Plenum, New, York, 1990).
34.J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. L. Toullee, G. Furdin, A. Herold, and J. Melin, J. Phys. (Paris) 41, 47 (1980).
35.M. F. Lin, and K. W. -K. Shung, Phys. Rev. B 50, 17744 (1994).
36.W. A. de Heer, W. S. Bacsa, A. Chalelain, T. Gerifin, R. Humphrey-Baker, L. Forro, and D. Vargte, Science 268, 845 (1995).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top