跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林伯耕
研究生(外文):Po-Keng Lin
論文名稱:訊號擷取方式對外腔二極體雷射頻率穩定的影響
論文名稱(外文):Study of Frequency Stabilization of the External Cavity Diode Laser Using Various Method
指導教授:蔡錦俊
指導教授(外文):Chin-Chun Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系碩博士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:81
中文關鍵詞:雷射穩頻外腔二極體雷射銫原子光譜
外文關鍵詞:External Cavity Diode LaserFrequency Stabilization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:526
  • 評分評分:
  • 下載下載:117
  • 收藏至我的研究室書目清單書目收藏:1
利用穩定二極體雷射頻率技術在各研究領域的重要性與日俱增,包括基礎的科學研究與工業應用。我們使用伺服系統來穩定外腔二極體雷射(ECDL),將雷射中心頻率穩定在飽和吸收光譜譜線的峰值上。一般而言,伺服穩頻系統包括兩個部分:第一是取得錯誤訊號(error signal),第二是反饋系統(feedback system)。為了取得錯誤訊息,我們嘗試三種方式,第一種方法,我們驗證一種健全的方式將二極體雷射頻率穩在原子的躍遷譜線上。這種技術是利用Zeeman shift 來產生都普勒增寬原子共振的反對稱訊號,這種穩頻方式可以產生很高的頻率穩定度而且具有很大的捕獲範圍(recapture range),是一種可調變頻率的穩頻方式。第二種方式我們修改傳統的飽和吸收光譜,我們使飽和光交叉兩道探測光產生一夾角,擷取兩道探測光的差值產生錯誤訊息,利用此種穩頻方式不需任何做任何頻率調變(frequency modulation)。第三種方式我們傳送100kHz的正弦波至AOM,進而調變雷射光頻率,這種方式並不需直接調變雷射本身,在取得錯誤訊息後,高頻的部分反饋給雷射電流控制器,低頻的部分反饋給雷射的PZT控制器。
The important of the frequency stabilization of diode laser has been increasing in a wide variety of fields covering the fundamental sciences and practical applications such as MOT and BEC in the atomic physics. We use servo lock system to stabilized our Extended Cavity Diode Lasers (ECDL). We locked the laser frequency to the center of the saturated absorption line. In general, the servo lock system included two parts. One is to obtain the error signals (dispersion-like signals), and the other is the feedback system. In order to derive the error signal, we tried third methods. In the first method, we demonstrate a robust method of stabilizing a diode laser frequency to an atomic transition. This technique employs the Zeeman shift to generate an antisymmetric signal about a Doppler-broadened atomic resonance, and therefore offers a large recapture range as well as high stability. This tunable frequency lock can be constructed inexpensive, requires little laser power, rarely loses lock, and can be extended to other wavelengths by use of different atomic species.For second method, we modify the typical saturated-absorption spectroscopy .We aligned two parallel probe laser beam intersected a pump laser beam at finite crossing angle The dispersion-like signal was obtained from the difference intensities of the two probe lasers passing through the vapour cell. We use this signal to stabilize the laser frequency without any frequency modulation. In the third method, we send 100kHz sin wave signal to the AOM, then we can modulated laser frequency. This method produce no frequency dither in the laser itself. The error signal was feedback to the laser. The high frequency send to injection current to compensate for long-term drifts, the low frequency send to PZT to compensate for short-term drifts/acoustic jitter.
致謝與感言……………………………………………………………..Ⅰ
中文摘要………………………………………………………………..Ⅱ
英文摘要………………………………………………………………..Ⅲ
目錄..........................................................................................................Ⅳ
表目錄…………………………………………………………………..Ⅷ
圖目錄…………………………………………………………………..Ⅸ

第一章 緒論……………………………………………………………..1
1.1. 雷射穩頻技術在原子分子所扮演的角色………………………1
1.2. 一般鎖頻原理(locking theory)…………………………………..1

第二章 半導體雷射二極體 (Semiconductor laser diodes)………....….3
2.1. 半導二極體(Semiconductor diode)……………………………...3
2.2. 雷射二極體(Laser diode)…………………………………….…..3
2.3. 外腔二極體雷射(External cavity diode laser: ECDL ) …..….....5
2.3.1. 外腔二極體雷射的原理與結構……………………….…..5
2.3.2. 外腔二極體雷射的特性與量測…………………….……..7

第三章 無都普勒效應的光譜(Doppler-free saturation spectroscopy)..12
3.1. 原子氣體的吸收譜線…………………………………………..12
3.2. 無都普勒效應的光譜訊號……………………………………..14

第四章 穩定外部共振腔二極體雷射頻率
4.1. DAVLL穩頻方式………………………………………………..16
4.1.1. 簡介……………………………………………………….16
4.1.2. 原理……………………………………………………….16
4.1.2.a. 圓偏振光分析儀…………………………………16
4.1.2.b. 線偏振光的 Jones 矩陣分析………………...…18
(Linear optical element of Jones matrix)
4.1.2.c. 法拉第轉動實驗…………………………………23
(Faraday’s rotation experiment )
4.1.2.d. Macaluso-Corbino 效應與旋光度……………….24
4.1.2.e. 平衡偏振計( balanced polarimeter)……………...26
4.1.2.f. 圓偏振的雙色性(circular dichroism)……….……27
4.1.3. 實驗……………………………………………………...31
4.1.3.a. 銫原子氣體管的磁場系統………………………31
4.1.3.b. 有限螺線管所產生的磁場 ……………………..32
4.1.3.c. 差值放大器………………………………………35
4.1.3.d. DAVLL的實驗裝置……………….……………..36
4.1.3.e. 穩頻的電子線路反饋……………………………38
(Electronic Feedback Frequency Locking)
4.1.3.f. 伺服穩頻電路………………………………….....38
4.1.3.g. 雷射鎖頻程序……………………………………40
4.1.4. DAVLL雷射穩頻的特性與結果分析…………………..41


4.2. 速率選擇分布飽和吸收光譜的類色散訊號……………………..45
(Dispersion-like signals in velocity-selective saturated-absorption spectroscopy)
4.2.1. 簡介……………………………………………………...45
4.2.2. 原理……………………………………………………...48
4.2.3. 實驗……………………………………………………...52
4.2.4. 結果與討論……………………………………………...53

4.3.飽和吸收光譜(Saturated absorption spectroscopy )的頻率調制(frequency modulation )…………………………………...………55
4.3.1. 一般原理……………………………………….…..……55
4.3.1.a. 一般調制方法 …………………………………57
4.3.1.b. 利用鎖相放大器(lock-in amplifier)來取得FM光譜………………………………………………..58
4.3.2. 雷射穩頻………………………………………….59
4.3.2.a. 飽和吸收光譜的實驗裝置……………………..59
4.3.2.b. 電子電路………………………………………..60
4.3.2.c. 鎖相偵測器/伺服穩頻線路/穩頻程序…………60
4.3.2.d. 光偵測器線路…………………………………..67
4.3.2.e. AOM 驅動電路…………………………………68


第五章 各種穩頻方式的比較
5.1. 各種鎖頻技術的比較………………………………………….69
5.1.1. 使用頻率調變…………………………………………..69
5.1.2. 不使用頻率調變………….………………………….....70
5.1.2.a. DAVLL鎖頻技術………………………………70
5.1.3.b. Velocity-Selective Locking Method……………72

附錄一…………………………………………………………………74
參考文獻………………………………………………………………77
1.B. E. A Saleh and M. C. Teich, “Fundamentals of photonics”, John Wiley&Sons, 1991.

2. M. W. Fleming and A. Mooradian, IEEE J. Quant. Electr. 17, 44
(1981).

3. M. de Labachelerie and P. Cerez, Opt. Comm. 55, 174 (1985).

4. K. C. Harvey and C. J. Myatt, Opt. Lett. 16, 910 (1991).

5. R. Wyatt and W. J. Devlin, Electron. Lett. 16 910 (1991).

6. M. G. Boshier, D. Berkeland, E. A. Hinds and V. Sandoghdar, Opt. Comm. 85, 355 (1991).

7. N. A. Olsson and J. P. Van Der Ziel, J. Lightware Technol. LT-5, 510 (1987).

8. P. Zorabedian and W. R. Trutna Jr, Opt. Lett. 13, 826 (1988).

9. F. Favre, D. L. Guen, J. C. Simon and B. landousies, Electron. Lett. 22 795 (1986).

10. R, Wyatt, Electron. Lett. 21, 658 (1985).

11. J. Harrison and A. Mooradian, IEEE J. Quantu Electron. 25, 1152
(1989).

12. L. A. Glasser, IEEE J. Quantum Electron. OE-16, 525 (1980).

13. K. Vahala, K. Kyuma, A. Yariv, S-K. Kwong, M. Cronin-Golomb and K. Y. Lau, Appl. Phys. Lett. 49, 1563 (1986).

14. P. H. Laurent, A. Clarion and C. H. Breant, IEEE J. Quantum Electron
Lett. 22, 795 (1986).

15. H. Li and H. R. Telle, IEEE J. Quantum Electron. 25, 257 (1989).

16. W. D. Lee, J. C. Campbell, R. J. Brecha and H. J. Kimble, Appl. Phys.
Lett. 57, 2181 (1990).

17. B. Dahmani, L. Hollberg and R. Drullinger, Opt. Lett. 12, 876 (1987).

18. T .P. Dinneen, C. D. Wallace and P. L. Gould, Opt. Comm. 92, 277
(1992).

19. A. Hemmerich, D. H. Mcintyre, D. Schropp Jr, D. Meschede and T. W. Hansch, Opt. comm. 75, 118 (1990).

20. F. Favre and D. L. Guen, IEEE J. Quantum Electron. OE-21, 1937
(1985).

21. Hugene Hecht “Optics” Fourth Edition, Addison Wesley Longman, Inc, 2002.

22. Verdeyen, “Laser Electronics”, Third Edition, Prentice Hall, New Jersey, 1995.

23. Sacher Lasertechnik: Active Stabilisation Use’r Manual: PI1000AS.

24. http://www.exfo.com/en/index.asp.

25. http://www.cohr.com/

26. Wolfgang Demtroder, “Laser Spectroscopy Basic Concepts and Instrumentation”, Second Enlarged Edition, Springer-Verlag Berlin Heidelberg, 1996.

27. Serge Huard “Polarization Of Light”, John Wiley & Sons, 1997.

28. Frank L. Pedrotti, S. J , Leno S Pedrotti “Introduction To Optics”, John Wiley&Sons, 1987.

29. Valeriy Yashchuk, Dmitry Budker, and John Davis, “Laser Frequency Stabilization Using Linear Magneto-Optics: Technical Notes” REPORT LBNL-43523, June , Berkeley, California (1999).

30. Kristan L. Corwin, Zheng-Tian Lu, Carter F. Hand, Ryan J. Epstein, and Carl E. Wieman “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor” Appl Opt. 20 May 1998/l37, No.15.

31. Dmitry Budlker, Donald J. Orlando, and Valeriy Yashchuk“Nonlinear
laser spectroscopy and magneto-optics”, Am. J. Phys. 67,7, July (1999).

32. John David Jackson, “Classical Electrodynamics”, Third Edition, John Wiley&Sons, Inc 1998.

33. Edward M. Purcell, “Electricity AND Magnetism”, Berkeley physics course volume 2, Mc Graw-Hill International Edition 1994.

34. K. B. MacAdam, A. Steinbach,and C.Wieman “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb” Am. J. Phys. 60 12, December (1992).

35. Jan Max Walter Kruger “A Novel Technique For Frequency Stabilising Laser Diodes”, University of Otago October (1998).

36. T.Yanagawa, S. Saito, S. Machida, Y. Yamamoto, Y. Noguchi, Appl. phys. lett. 47, 1036 (1985).

37. Y. Sakai, I. Yokohama, G..Kano, S. Sudo, IEEEpoton. Technol. Lett. 4,96 (1991).

38. T. Ikegami, S. Ohshima, M. Ohtsu, Jpn. J. Appl. Phys. 28,101 (1989)
L1839.

39. U. Shim, J. A. Kim, W.Jhe, J. Korean. Phys. Soc. 35 30 (1999).

40. M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 22, 722 (1982).

41. C. Wieman, T. W. Hansch, Phys. Rev. Lett. 36 1170 (1976).

42. F.-L. Hong, A. Onae, H.Matumoto, Jpn. J. Appl. Phys. 39, 1918 (2000).

43. R. N. Li, S. T. Jia, D. Bloch, M. Ducloy, Opt. Comm. 146, 186 (1998)
.

44. J. Vanier, C.Audoin, The Quantum Physics of Atomic Frequency Standard, Philadelphia: Adam Hilger, Bristol, (1989).

45. 蔡建銘, “Frequency Stabilization of Diode Laser by LabVIEW Program”, 國立中興大學物理研究所碩士論文(1999).

46. Thomas Howard Loftus, “Laser Cooing and Traping of Atomic Ytterbium”(A Dissertation) Presented to the Department of Physics and the Graduate School of the University of Oregon in partial fulfillment of the requirements for the degree of Doctor of Philosophy (June 2001 ).

47. Stephen Dale. “Gensemer.Characterization and Control of Ultracold Collisions” University of Connecticut (2000).

48. Doctoraalscriptie van Stefan Petra “Development of frequency stabilized laser diodes for building a Magneto-Optical Trap” Universiteit van Amsterdam (Augustus1998).

49. R. A. Cornelussen “Atomic Beam preparation Quantum Optics Experiments” Eindhoven University of Technology, Faculty of Applied Physics, Theoretical and Experimental Atomic Physics and Quantum Electronics Group (march 1999).

50. Christopher David Wallace “Measurements of Trap Loss Rate Coefficients and Trap Characteristics of a Rubidium Magneto-Optical Trap” A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy at The University of Connecticut (1994).

51. http://www.minicircuits.com/mixer.html.

52. Diode laser electronics for atom optics, Optics Atom Group, The University of Melbourne,
http://optics.ph.unimelb.edu.au/atomopt/electronics/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top