跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭兆均
研究生(外文):Chao-Jun Cheng
論文名稱:二維向量化推力噴嘴之設計與流場分析
論文名稱(外文):Design and Analysis of Two-Dimensional Thrust-Vectoring Nozzle
指導教授:梁勝明
指導教授(外文):Shen-Min Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:124
中文關鍵詞:加權基本不震盪法斂散型噴嘴向量推力噴嘴
外文關鍵詞:WENO scheme2D-CD nozzlethrust-vectoring nozzle
相關次數:
  • 被引用被引用:4
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:2
本文利用數值模擬的方法,來分析在不同外型下之二維向量化噴嘴內流場的性質,及其產生向量推力的角度,並分析發散段銜接收斂段之噴嘴外型。所採用的數值方法為加權基本不震盪法(WENO Scheme)〔1〕,時間積分上採用non-TVD的四階Runge-Kutta method,求解二維、非軸對稱、可壓縮尤拉/那維爾-史托克方程式。狀態方程式以理想氣體方程式來加以描述,並假設噴嘴上下壁面為絕熱條件,給定入口條件,出口性質為超音速,故直接外插求得。同時利用一維理論、非黏性解、黏性解與真實氣體,來瞭解不同數學模式對結果的影響。紊流解中係採用Baldwin&Lomax之紊流模式〔2〕。
首先先對於二維無向量推力之噴嘴(A1-type)、非黏性流體、無加密格點做實驗與理論值的探討、比較,其次再針對不同噴嘴外型、加密格點的程度、黏性解與非黏性解、產生的推力角度做深入分析,最後探討真實氣體下溫度效應及氣體比熱比(γ)的影響。本文中所討論的幾何外型主要包括:A1、A1V10、A1V13、A1V20四種外型,其設計之向量推力角度各為0°、9.79°、13.22°、20.26°,此外本文將自行設計另外兩種噴嘴外型,定名為TEST-V07與TEST-V16,預計推力角度為7°與16°。結果顯示,此數值方法之結果與實驗之比對,均相當吻合,能提供可靠的結果及參考依據。
結果並顯示噴嘴內音速線(Sonic line)位置的移動,使噴嘴流場有顯著的變化。在過度擴散(Overexpanded)之操作範圍下,噴嘴壓力比對向量推力角度影響很小,即在NPR≧4.0。而且在固定壓力比下,隨著向量角度增加,其推力性能中的轉向損耗(Turning losses )則愈大。而黏性效應在此問題的討論中影響很小,因此往後的計算將著重於以非黏性條件求解所需討論之課題。
在提升入口馬赫數從0.4749至0.85,總推力增加約14%,推力效率(Isp )增加約2%,但對於向量推力角度的助益幾乎沒有。若入口的溫度從4200K降到1300K左右(NPR=Pt/Pe=4.0),總推力增加約3%,推力效率增加近50%,而向量推力角度確有2%的提升,因此向量推力角度受到溫度的影響要比速度來的大。
In this study of numerical simulation is used to investigate the flow properties and thrust angles of two-dimensional thrust-vectoring nozzles with different shapes. The geometric segments of these convergent-divergent nozzles are also analyzed. Using a WENO Scheme and a 4th-order Runge-Kutta method, the two-dimensional compressible Euler equations are solved. The configuration of the investigated nozzles includes A1 (0°)、A1V10 (9.79°)、A1V13 (13.22°) and A1V20 (20.26°).
First, we consider an ideal gas, Inviscid flow and viscous flows with laminar and turbulent models are calculated. In viscous flow calculation, we find that viscous-flow result is very close to that of inviscid flow and of experimental data. Namely, the viscous effect has no influence on vectored thrust. Thus, we use inviscid-flow model to investigate the 2D thrust-vectoring nozzles with ideal- and real-gas effects. Next, we consider a real gas to the effect of real gas. We also discuss the grid, specific-heat ratio and temperature effects on the numerical solution. In addition, we design two testing types called TEST-V07 and TEST-V16, which have thrust angles of 7°and 16° respectively. Ti is found that the computed thrust angles are good agreement with the design condition. The boundary condition of wall is adiabatic and reflected.
The predicted thrust angles are compared with experimental data. It is found that the computed result is well agreed with the existing data. Moreover, the flow field behind the throat is prominently changed with the sonic line position. In an ideal operation, the nozzle pressure ratio (NPR) greater than 4.0 has little effect on the nozzle flow field, and the thrust performance with turning losses is increased with the thrust angle.
It is found that the increase of inlet Mach number from 0.4749 to 0.85, the thrust-vectoring angle is almost not changed, but the total thrust increased about 14% and about 2% for specific impulse. By decreasing the inlet temperature from 4200K to 1300K (NPR=Pt/Pe=4.0), the thrust-vectoring angle is increasing about 2%, 3% for the total thrust and 50% for specific impulse. Therefore, it is concluded that the effect of the inlet temperature is greater than that of the inlet Mach number.
中文摘要 I
英文摘要 III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 XIII
第一章 緒論 1
§1-1研究動機 1
§1-2文獻回顧及方法 3
第二章 噴嘴特性 5
第三章 數學模式 6
§3-1流體統御方程式之積分式 6
§3-2流體統御方程式之微分式 7
§3-3廣義座標之統御方程式 9
§3-4真實氣體效應 12
§3-5紊流模式 12
第四章 數值方法 15
§4-1加權基本不震盪法 15
§4-2應用於尤拉系統(Euler systems) 17
§4-3時間積分 18
§4-4時間間隔 18
§4-5初始條件 19
§4-6邊界條件 20
第五章 結果與討論 24
§5-1非黏性解 24
§5-2黏性解 25
§5-3無偏折角之噴嘴(Unvectored nozzle,A1) 26
§5-4向量推力噴嘴(A1V10,A1V13,A1V20) 27
§5-5向量推力角度 29
§5-6其他測試外型之結果 30
§5-7噴嘴NPR的影響 31
§5-8溫度效應 33
第六章 結論與建議 36
附錄A 38
附錄B 40
參考文獻 42
1.G. S. Jiang and C. W. Shu, “Efficient Implementation of Weighted ENO Schemes,” J. Comp. Phys., Vol. 126, pp. 202-228, 1996.
2.B. S. Baldwin and H. Lomax, “Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows,” AIAA paper 78-257, 1978.
3.C. W. Alcorn, M. A. Croom, M. S. Francis, and H. Ross, “The X-31 Aircraft: Advances in Aircraft Agility and Performance,” Prog. Aerosp. Sci., Vol. 32, No. 4, pp. 377-413, 1996.
4.王立杰, “俄製戰機超級機動性之探討,” 空軍學術月刊, 第526期, Sep. 1990.
5.R. Whitford, “Design for Air Combat,” Jane's Publishing Inc., pp. 207-211, 1987.
6.B. L. Berrier and R. J. Re, “A Review of Thrust-Vectoring Technology Schemes for Fighter Aircraft,” AIAA paper 78-1023, July 1978.
7.B. L. Berrier, J. L. Palcza, and G. K. Richey, “Nonaxisymmetric Nozzle Technology Program—An Overview,” AIAA paper 77-1225, Aug. 1977.
8.D. J. Dusa, D. W. Speil, and R. K. Rowe, “Advanced Technology Exhaust Nozzle Development,” AIAA paper 83-1286, June 1983.
9.F. J. Capone, “Static Performance of Five Twin-Engine Nonaxisymmetric Nozzles with Vectoring and Reversing Capability,” AIAA TP-1224, May 1978.
10.F. J. Capone and M. L. Mason, “An Experimental Investigation of Thrust Vectoring Two-Dimensional Convergent-Divergent Nozzles Installed in a Twin-Engine Model at High Angles of Attack,” NASA TM-4155, Feb. 1990.
11.E. A. Bare and D. E. Reubush, “Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with Thrust Vectoring,” NASA TP-2721, July 1987
12.J. G. Taylor, “Static Investigation of a Two-Dimensional Convergent-Divergent Exhaust Nozzle with Multiaxis Thrust-Vectoring Capability,” NASA TP-2973, Apr. 1990.
13.R. J. Re and L. D. Leavitt, “Static Internal Performance Including Thrust Vectoring and Reversing of Two-Dimensional Convergent-Divergent Nozzles,” NASA TP-2253, Feb. 1984.
14.A. Bailey, L. L. Price and J. G. Pipes, “Effect of Ambient Pressure on Nozzle Centerline Flow Properties,” AIAA J., Vol. 23, No. 6, pp. 953, June 1985.
15.T. H. Pulliam, “Euler and Thin Layer Navier-Stokes Codes: ARC2D, ARC3D,” Notes for Computational Fluid Dynamics User’s Workshop, The University of Tennessee Space Institute, Tullahoma, Tennessee, March 12-16, 1984.
16.S. Srinivasan, J. C. Tannehill and K. J. Weilmuenster, “Simplified Curve Fits for the Thermodynamic Properties of Equilibrium Air,” NASA RP-1181, Aug. 1981.
17.C. M. Hung, “Extrapolation of Velocity for Inviscid Solid Boundary conditions,” AIAA J., Vol. 25, No. 11, pp. 1513-1515, Nov. 1987.
18.吳望一“流體力學,” 狀元出版社, 1989.
19.J. D. Anderson, Jr., “Fundamentals of Aerodynamics,” McGraw-Hill Inc., Chapter 10, 1984.
20.凌全伯, “以數值方法探討靜態下二維向量噴嘴之流場,” 國立成功大學碩士論文, June 1992.
21.陳國健, “衛星姿態控制用推力器之模擬與設計,” 國立成功大學碩士論文, June 1993.
22.王榮盛, “球面爆震波傳遞與反射行為之數值模擬,” 國立成功大學碩士論文, June 2000.
23.A. J. Steer, “Low Speed Control of a Second Generation Supersonic Transport Aircraft Using Integrated Thrust Vectoring,” Aeronaut. J., Vol. 104, No. 1035, pp. 237-245, May 2000.
24.A. Lichtsinder, E. Kreindler, and B. Gal-Or, “Minimum-Time Maneuvers of Thrust-Vectored Aircraft,” J. Guid. Control Dyn., Vol. 21, No. 2, Mar.-Apr. 1998.
25.A. Matesanz, A. Velazquez, and M. Rodriguez, “Aerodynamics Performance Prediction of Thrust-Vectoring Nozzle,” J. Propuls. Power, Vol. 14, No. 2, pp. 241-246, Mar.-Apr. 1998.
26.B. E. Thompson, O. Bouchery, and K. D. Lowney, “Flow Through a Submerged Nozzle,” J. Spacecr. Rockets, Vol. 32, No. 6, pp. 986-992, Nov.-Dec. 1995.
27.B. Gal-Or, “Vectored Propulsion, Supermaneuverability and Robot Aircraft,” Spring-Verlag New York, 1990.
28.C. B. Sorensen, E. Mosekidle, and P. Granasy, “Nonlinear Dynamics of a Vectored Thrust Aircraft,” Phys. Scr. T67, pp. 176-183, 1996.
29.C. W. Chu, “Expedient Approach to Nonaxisymmetric Nozzle Performance Prediction,” J. Aircr., Vol. 17, No. 2, pp. 127-128, Feb. 1980.
30.D. M. North, “Thrust Vectoring Su-37 Demonstrates Agility,” Aviat. Week Space Technol., Vol. 145, No. 11, pp. 24-24, Sep. 9, 1996.
31.E. A. Wilson, D. Adler, and P. Bar-Yoseph, “Thrust-Vectoring a Single Impinging Jet in a Crossflow,” Int. J. Turbo Jet Eng., Vol. 17, No. 3, pp. 219-226, 2000.
32.E. A. Wilson, D. Adler, B. Z. Bal-Or, V. Sherbaum, and M. Lichtsinder, “Optimizing Subcritical-Flow Thrust-Vectoring of Converging-Diverging Nozzles,” J. Propuls. Power, Vol. 16, No. 2, pp. 202-206, Mar.-Apr. 2000.
33.F. J. Capone, “Supercirculation Effects Induced by Vectoring a Partial-Span Rectangular Jet,” J. Aircr., Vol. 12, No. 8, pp. 633-638, Aug. 1975.
34.Karl L. Sanders, “Effect of Thrust Vectoring on Level-Turn Performance,” J. Aircr., Vol. 34, No. 4, pp. 576-576, Jul.-Aug. 1997.
35.Kazuhiro Horie and Bruce A. Conway, “Optimization for Fighter Aircraft Vertical-Plane Maneuvering Using Poststall Flight,” J. Aircr., Vol. 37, No. 6, pp. 1017-1021, Nov.-Dec. 2000.
36.Kevin A. Wise and David J. Broy, “Agile Missile Dynamics and Control,” J. Guid. Control Dyn., Vol. 21, No. 3, pp. 441-449, May-Jun. 1998.
37.P. E. Hiley, H.W. Wallace, and D. E. Booz, “Nonaxisymmetric Nozzles Installed in Advanced Fighter Aircraft,” J. Aircr., Vol. 13, No. 12, pp. 1000-1006, Dec. 1976.
38.P. J. Strykowski, A. Krothapalli, and D. J. Forliti, “Counterflow Thrust Vectoring of Supersonic Jets,” AIAA J., Vol. 34, No. 11, pp. 2306-2314, Nov. 1996.
39.S. Hollmeier, S. Kopp, O. Herrmann, and H. Rick, “Propulsion/Aircraft Integration of Hypersonic Vehicles with Active Thrust-Vectoring and Real-Time of Dynamic Engine Behavior,“ Int. J. Turbo Jet Eng., Vol. 16, No. 4, pp. 207-221, 1999.
40.S. M. Liang and C. J. Tsai, “Shock Oscillation in Two-Dimensional, Inviscid, Unsteady Channel Flow,” AIAA J., Vol. 31, No. 1, pp. 200-203, Jan. 1993.
41.S. M. Liang, K. L. Huang, K. C. Chen, “Numerical Study of Low-Thrust Nozzles for Stallites,” J. Spacecr. Rockets, Vol. 33, No. 5, pp. 693-699, Sep.-Oct. 1996.
42.S. W. Kandebo, “JAST Design Benefits from Main Engine Thrust Vectoring,” Aviat. Week Space Technol., Vol. 144, No. 7, pp. 57-59, Feb. 12, 1996.
43.T. Cebeci and A. M. O. Smith, “Analysis of Turbulence Boundary Layers,” Academic Press., New-York, 1974.
44.V. Sherbaum and M. Lichtsinder, “Jet Deflection Angles in Military, Civil and RPV Thrust Vectoring Aircraft,” Int. J. Turbo Jet Eng., Vol. 15, No. 2, pp. 91-94, 1998.
45.C. Oates, “Aircraft Propulsion Systems Technology and Design” AIAA Education Series, 1989.
46.G. Hill and Carl R. Peterson, “Mechanic and Thermodynamics of Propulsion” Addison-Wesley Publishing Company, Inc., 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top