跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉輝
研究生(外文):Chia-Hui Wang
論文名稱:水電式體外震波碎石機之間距自動控制系統設計和性能評估
論文名稱(外文):Design and Performance Evaluation of an Automatic Gap-Controlled System of Electrdes for Electro-Hydraulic Lithotriptor
指導教授:梁勝明
指導教授(外文):Shen-Min Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:82
中文關鍵詞:影像擷取體外震波碎石術間距自動控制系統壓力量測
外文關鍵詞:pressure measurementESWLgapedge detection
相關次數:
  • 被引用被引用:5
  • 點閱點閱:461
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
體外震波碎石機近一、二十年來,一直為治療結石病患的主要技術,其中又以水電式體外震波碎石機為主流。其震波的產生機制是利用高電壓電容器在兩電極間放電產生電弧,使得電極周圍的水瞬間受熱膨脹而形成氣泡,而氣泡有如一活塞式的球形波,推動水產生震波並經由橢圓反射體聚焦於結石所在的第二焦點。
目前所有的水電式體外震波碎石機所採用的都是固定式電極棒間距,亦即電極間距是不可調整的,但是因為電極棒容易溶蝕造成聚焦壓力驟降甚至無法擊發,為此本研究遂研發出對插可調式電極棒之震杯電極組,益能在最簡易的操作環境下,可以控制放電間距使得聚焦壓力能有最穩定的表現。
在硬體設計方面,係利用鋼製橢圓反射體當作基座,並將馬達架設於基座兩端,而為了馬達以及齒輪座與反射體之間的絕緣問題,齒輪座以及所有絕緣材料皆採用紙質電木材質來設計,並於電極紅銅基座外加上一鐵夫龍絕緣。利用架設於反射體上之AC伺服馬達,以個人電腦下達脈波訊號透過MC8041A軸控卡以及I/O卡經編碼器來驅動馬達,並帶動齒輪皮帶控制電極棒的進給。而影像模組則是以CCD擷取外界之類比影像,經由NI(National instruments)公司之IMAQ PCI-1408影像擷取卡將類比訊號轉變為數位影像,並以影像處理之技術量測得電極棒之間距,而軟體程式設計與實現則是使用美商慧�痐膝q的LabVIEW程式做為程式設計發展平台。
本實驗之結果,利用本論文自行發展之操作環境找出不同電極材質之最佳放電間距,並利用PCB壓力探針量測得最佳間距下的聚焦壓力、以及因輸出壓力穩定而得到最佳之結石粉碎效果,並比較出各種材質的放電效率以及結石粉碎效果。經由本實驗所得到之放電間距可供醫師在治療結石過程中之參考依據。
In the recent twenty years, extracorporeal shock wave lithotripsy (ESWL) has become the main treatment technique for patients with urinary stones. Among the shock wave generators, the electrohydaulic generator is more dominant. The method of shock wave generation is to use a high-voltage capacitor that releases an electrical current to generate a spark between electrodes. This spark occurs in the water between the electrodes in a very short time, and evaporates water to form a bubble. Due to the expansion of the bubble in a very short time, a blast wave, i.e., a shock wave, occurs. The blast waves generated at the first focus of a truncated ellipsoidal reflector will focus at the second focus where a calculus is placed. The high pressure induced by shock wave focusing is the energy source for calculus fragmentation.
Up to date, all of the electrohydaulic generator’s spark gaps are fixed. Namely, the distance between the electrodes can’t be adjusted. Consequently, the shock wave may not be generated if the spark gap is too large because of wearing. Therefore, the purpose of this thesis is to design a controllable spark gap system. For this goal, we set up a set of hardware and software that include the LabVIEW (Laboratory Virtual Instrument Engineering Workbench) Graphical Program, gap-controlled system and an image feedback system.
On the aspect of hardware, we fix two AC motors at the opposite sides of an ellipsoidal reflector that is made of steel. For the insulation between the base and the motors, the insulating material used was Bakelite. We also used Teflon to cover the electrode base as an insulation layer. After receiving commands from the image feedback system, the motor’s driver actuates the motor which is connected the electrode base by a belt. To control the gap of electrodes, a relation between the number of gear turns of the motor and the pitch of electrode’s base. By rotating gear turns we can control the gap of electrodes. In the image feedback system, we use the IMAQ PCI-1408 image card by changing the analog video signal to digital images. Then we use the image detection tool to detect the gap between the two electrodes.
Our experimental results show that there is an optimal spark gap for different material electrodes. We also measured the energy intensity at the second focus with a PCB pressure sensor for our gap-controlled system with the image feedback system. Based on the measured pressures, we find that the performance of our gap-controlled electrodes is better compared with the system without a gap control. The performance evaluation is based on the average pressure of the focused pressures with small standard variation at the second focus and on the stone fragmentation efficiency.
中文摘要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表 目 錄 vii
圖 目 錄 viii
符號說明 x
第一章 緒論 1
1-1 前言 .1
1-2 研究動機與目的 .2
1-3 文獻回顧 .3
1-4 震波聚焦基本特性 .4
1-5 本文內容 .6
第二章 間距控制系統架構 .7
2-1 體系統架構 .7
2-1-1 MC8041A 多軸馬達控制卡 .8
2-1-2 MCX314 微處理器 .9
2-1-3 PC與軸控卡之通訊傳輸 .9
2-1-4 配線箱 .15
2-2 軟體系統架構 .15
2-2-1 控制模組 .16
2-2-2 壓力量測模組 .17
2-2-3 影像擷取模組 .20
2-3 系統建構工作項目與說明 .23
第三章 實驗設備及方法 .25
3-1 體外震波碎石機 .26
3-2 PCB壓電式壓力感測器 .27
3-3 實驗目的及步驟 .28
第四章 實驗結果分析 .32
4-1 不同電極材質之評比 .32
4-2 各組電極調整控制時機 .32
4-3 水中融氧量對聚焦壓力的影響 .33
4-4 爆震波之理論有效反射率 .33
4-5 電極間距控制與否的比較 .34
第五章 結果與討論 .35
參考文獻 .36
附錄一 .39
附錄二 .40
附錄三 .41
附錄四 .60
自述 .65
[1]“長庚體外震波碎石室”(2002) http://www.urocare.com.tw/newpage5.htm
[2]“全國泌尿科醫學年會報導” (2002)http://taipei.tzuchi.org.tw/taolu/328/p328-3d.htm
[3]戴興邦,尤芳忞楊智光,梁勝明,蒲永仁,郭昭霖,陳天送,陳進興”中華民國醫學工程科技研討會論文集” ,pp.256-263,1998.
[4]Petty, R. W. and Kantrowitz, A., “The Production and Stability of Converging Shock Waves” Journal of Applied Physics, Vol. 22, No. 7,pp.878-886, 1951.
[5]Bailitis, E., “Der Schallimpuls eines Flüssigkeitsfunkens (The Pressure Pulse of a Liquid Spark),” Zeitschrift für angewandte Physik einschlieβlch Nckleonik, Vol. 9, pp. 429-434.1957.
[6]Häusler, E. and Kiefer, W., “Anregung von Stosswellen in Flüssigkeiten durch Hochgeschwindigkeitswassertropfen,” Verh Dtsch Physik Ges, Vol. 10, p. 36, 1971.
[7]Chaussy, C., Schmiedt, E., Jocham, D., Schuller, J., Brendel, H., and Liedl, B., “Extracorporeal Shock-Wave Lithotripsy (ESWL) for treatment of Urolithiasis,” Urology, Vol. 93, p. 59, 1984.
[8]Chaussy, C., Schmiedt, E., Jocham, D., Brendel, W., Forssmann, B., and Walther, W., ”First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.
[9]Grönig, H., “Shock Wave Focusing Phenomena,” Plenary Lectures, Stoβwellenlabor, Institut F. Luft-u. Raumfahrt, RWTH Aachen, pp. 43-56, 1985.
[10]Hunter, P. T., Finayson, B., Robert, J., Hirko, W. C., Voreck, R. W., Scott W., Mohammed, N., “Measurement of Shock Wave Pressures Used for Lithotripsy,” Journal of Urology, Vol. 136, pp. 733-738, 1986.
[11]Chuong, C. J. “Different Stone Damage Modes During Lithotripsy Shock Wave Delivery” Biomechanics Symposium, pp. 5-8, 1989.
[12]Charles, C. J., Pei Zhong and Glenn Preminger, M. “A Comparison of Stone Damage Caused by Different Modes of Shock Wave Generation” Journal of Urology, Vol. 148, 200-205, July 1992.
[13]陳進興、陳天送,改進國產體外震波碎石機之技術開發(1/3)體外震波碎石機即時超音波結石定位系統之開發,行政院國科會產學合作計劃成果報告,台南市,1997。
[14]戴興邦,“體外震波碎石機之性能評估”,成功大學航空太空工程研究所,碩士論文,台南市,1998。
[15]楊智光,“體外震波碎石機反射罩杯之設計”,成功大學航空太空工程研究所,碩士論文,台南市,1998。
[16]郭昭霖,“體外震波碎石機自動追蹤系統”,成功大學醫學工程研究所,碩士論文,台南市,2000。
[17]李衍德,“水電型體外震波碎石機反射罩杯之設計”,國立成功大學航空太空工程研究所,碩士論文,台南市,1999。
[18]顏志成,“水電式體外震波碎石機電極之間距控制設計”, 國立成功大學航空太空工程研究所,碩士論文,台南市,2001。
[19]Sturtevant, B.,”Shock Wave Physics of Lithotriptors” in Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552,1996.
[20]鄭超元,數位伺服的系統設計,文笙書局,1991。
[21]陳信宏、陳俊仁,數位控制伺服系統,今古文化事業股份有限公司,1992。
[22]杜映磊,介面技術,權威圖書有限公司,1998。
[23]Coleman, A. J., and Saunders, J. E., “A Survey of the Acoustic Output of Commercial Extracorporeal Shock Wave Lithotripters,” Ultrasound in Medicine and Biology, Vol. 15. No. 3, pp. 213-227, 1989
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top