跳到主要內容

臺灣博碩士論文加值系統

(54.80.249.22) 您好!臺灣時間:2022/01/20 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇仁政
研究生(外文):Jen-Cheng Su
論文名稱:高效率柴油引擎燃燒模擬與分析
論文名稱(外文):High Efficiency Diesel Engine Combustion Simulation and Analysis
指導教授:邱輝煌邱輝煌引用關係
指導教授(外文):Huei-Huang Chiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:78
中文關鍵詞:柴油引擎噴霧燃燒
外文關鍵詞:spray combustiondiesel engine
相關次數:
  • 被引用被引用:10
  • 點閱點閱:652
  • 評分評分:
  • 下載下載:175
  • 收藏至我的研究室書目清單書目收藏:3
柴油引擎因具優良熱效率及低污染排放,有鑑於此,本文針對此進行研究探討,採用KIVA3V(第二版)程式對於柴油引擎燃燒狀態進行模擬與探討,程式中已改進多項物理機制,包括:低溫化學反應機制之殼點火模式、初始破裂及空氣動力破裂機構之KH-RT噴霧破裂模式、油滴點火模式以界定油滴狀態及油滴群相互影響之氣化率與阻力之模組。此數值程式分別對汽缸壓力及熱釋放率作計算分析,並與實驗值相互比對驗證其可行性,並對點火延遲時間之預測,結果顯示程式具備相當準確之模擬能力。
本文針對直噴式柴油引擎進行數值模擬,藉由調整噴油時機、噴油注入燃燒室夾角、油滴尺寸變化來控制油滴群變遷,再加上不同引擎轉速之控制參數,以檢視不同參數下對燃燒室內部影響,並建立一設計分析準則,以提供引擎設計研發作為有效之重要參考依據。在結果比較上,發現到氮化物生成與燃燒室溫度有密切關連,並發現到油滴尺寸及噴油時機將對點火時機將造成顯著影響,當點火延遲時間越長,則初期熱釋放峰值越高。
Diesel engine has many advantages including high efficiency and low polluted formation. For these reasons, the present study aims to simulate the combustion chamber of the diesel engine using KIVA3V (Rel.2) code which has been updated with the physical models including the Shell ignition model, the KH-RT spray breakup model, droplet ignition criteria, and renormalize droplet laws. The numerical simulation of this code has been performed to validate its applicable feasibility for predicting of cylinder pressure distribution and heat release rate in comparison with experimental data in the combustion chamber of Caterpillar DI diesel engine.
The objective of the thesis is to develop an analytic design criterion studied the effect about the engine rpm, droplet size, injection timings, spray nozzle cone angle and the tilt angle between spray nozzle axis and combustion chamber. The results indicate that the predicted flow structures have an important impact on the prediction of NOx formation since it is very sensitive to local temperature in the combustion chamber. And the droplet ignition timing is affected upon the droplet size and the injection timing. On the other hand, the initial peak heat release value is subjected to the droplet ignition delay.
目 錄

中文摘要…………………………………………………………………………… i
英文摘要…………………………………………………………………………… ii
致謝………………………………………………………………………………… iii
目錄………………………………………………………………………………… iv
表目錄……………………………………………………………………………… vi
圖目錄……………………………………………………………………………… vii
符號說明…………………………………………………………………………… ix
第一章 導論…………………………………………………………………… 1
1.1 前言…………………………………………………………………………… 1
1.2 文獻回顧……………………………………………………………………… 2
1.2.1 噴霧燃燒之發展…………………………………………………………… 2
1.2.2 內燃機之發展史概述……………………………………………………… 5
1.2.3 生質燃油之近期發展……………………………………………………… 6
1.3 研究動機與背景……………………………………………………………… 7
1.4 本文概述……………………………………………………………………… 9
第二章 物理與數學模式……………………………………………………… 10
2.1 物理問題描述……………………………………………………………… 10
2.2 假設與邊界條件…………………………………………………………… 10
2.3 統御方程式………………………………………………………………… 11
2.3.1氣相統御方程式…………………………………………………………… 11
2.3.1液相統御方程式…………………………………………………………… 16
2.3.3油滴霧化模式……………………………………………………………… 17
2.4 物理模式…………………………………………………………………… 19
2.4.1 噴霧破裂模式……………………………………………………… 19
2.4.2 油滴點火模式……………………………………………………… 21
2.4.3 殼點火模式………………………………………………………… 22
2.4.4 燃燒模式…………………………………………………………… 23
2.4.5 NOX生成模組………………………………………………………… 24
2.5 群集燃燒理論……………………………………………………………… 25
第三章 數值方法……………………………………………………………… 27
3.1 KIVA程式簡介……………………………………………………………… 27
3.2 數值方法…………………………………………………………………… 28
3.3 數值格點產生……………………………………………………………… 28
第四章 結果與討論…………………………………………………………… 30
4.1 各種參數之分析與研究…………………………………………………… 30
4.2 不同參數對點火延遲之影響……………………………………… 35
4.3 燃燒室油滴點火狀態及氣動熱力學結構之探討………………… 36
第五章 結論與未來展望……………………………………………………… 38
5.1 結論………………………………………………………………… 38
5.2 未來展望………………………………………………………… 39
參考文獻………………………………………………………………………… 40
自述……………………………………………………………………………… 77
著作權聲明……………………………………………………………………… 78

表 目 錄

表一 Caterpillar單缸四閥門直噴式柴油引擎規格圖……………………… 45
表二 Caterpillar直噴式柴油引擎在不同轉速下之初始狀態……………… 46
表三 Caterpillar直噴式柴油引擎在1600rpm之變更參數………………… 46
表四 三種主要生質燃油比較表……………………………………………… 47

圖 目 錄

圖一 噴霧燃燒系統之研究分支……………………………………………… 48
圖二 柴油引擎燃燒室內部之各種物理現象………………………………… 49
圖三 噴霧燃燒現象之示意圖………………………………………………… 50
圖四 群集燃燒狀態圖………………………………………………………… 51
圖五 徑向分佈函數圖………………………………………………………… 52
圖六 KIVA程式運作之流程圖………………………………………………… 53
圖七 KIVA程式運作之流程圖(續)………………………………………… 54
圖八 切割引擎燃燒室30度剖面及幾何位置之示意圖……………………… 55
圖九 不同轉速下之壓力隨角度變化圖……………………………………… 56
圖十 不同轉速下之溫度隨角度變化圖……………………………………… 56
圖十一 不同轉速下之熱釋放率隨角度變化圖……………………………… 57
圖十二 不同轉速下之液汽相油滴隨角度變化圖…………………………… 58
圖十三 不同轉速下之NOx生成隨角度變化圖……………………………… 58
圖十四 不同油滴大小於1600rpm之壓力隨角度變化圖…………………… 59
圖十五 不同油滴大小於1600rpm之溫度隨角度變化圖…………………… 59
圖十六 不同油滴大小於1600rpm之熱釋放率隨角度變化圖……………… 60
圖十七 不同油滴大小於1600rpm之液汽相油滴隨角度變化圖…………… 61
圖十八 不同油滴大小於1600rpm之NOx生成隨角度變化圖………………… 61
圖十九 不同噴霧錐角於1600rpm之壓力隨角度變化圖…………………… 62
圖二十 不同噴霧錐角於1600rpm之溫度隨角度變化圖…………………… 62
圖二十一 不同噴霧錐角於1600rpm之熱釋放率隨角度變化圖…………… 63
圖二十二 不同噴霧錐角於1600rpm之液汽相油滴隨角度變化圖………… 64
圖二十三 不同噴霧錐角於1600rpm之NOx生成隨角度變化圖……………… 64
圖二十四 不同噴霧夾角於1600rpm之壓力隨角度變化圖………………… 65
圖二十五 不同噴霧夾角於1600rpm溫度隨角度變化圖…………………… 65
圖二十六 不同噴霧夾角於1600rpm之熱釋放率隨角度變化圖…………… 66
圖二十七 不同噴霧夾角於1600rpm之液汽相油滴隨角度變化圖………… 67
圖二十八 不同噴霧夾角於1600rpm之NOx生成隨角度變化圖……………… 67
圖二十九 不同噴油時間於1600rpm之壓力隨角度變化圖………………… 68
圖三十 不同噴油時間於1600rpm之溫度隨角度變化圖…………………… 68
圖三十一 不同噴油時間於1600rpm之熱釋放率隨角度變化圖…………… 69
圖三十二 不同噴油時間於1600rpm之液汽相油滴隨角度變化圖………… 70
圖三十三 不同噴油時間於1600rpm之NOx生成隨角度變化圖…………… 70
圖三十四 實驗值與計算值在不同噴油時間於1600rpm之壓力隨
角度變化圖……………………………………………………………………… 71
圖三十五 實驗值與計算值在不同噴油時間於1600rpm之熱釋放
率隨角度變化圖………...…………………………………………………… 71
圖三十六 1600rpm下燃燒室內部分佈圖(一)…………………………… 72
圖三十七 1600rpm下燃燒室內部分佈圖(二)…………………………… 73
圖三十八 1600rpm下燃燒室內部分佈圖(三)…………………………… 74
圖三十九 1600rpm下燃燒室內部分佈圖(四)…………………………… 75
圖四十 1600rpm下燃燒室內部分佈圖(五)……………………………… 76
1.Godsave, G.A.E., “Studies of the Combustion of Drops in a Fuel Spray: The Burning of Single Drop of Fuel”, 14th Symposium (Int) on Combustion, pp.818-830, 1953.
2.Spalding, D.B., “The Combustion of Liquid Fuels”, 14th Symposium (Int) on Combustion, pp.847-864, 1953.
3.Williams, A., “Combustion of Droplets of Liquid Fuel: A Review”, Combustion and Flame, Vol.21, pp.1-31, 1973
4.Peskin, R.L., Polymerpoulos, C.E. and Yeh, P.S., “Results from a TheoreticalStudy of Fuel Drop Ignition and Extinction”, AIAA Journal, Vol.5, No.12, pp.2173-2178, 1967.
5.Polymerpoulos, C.E. and Peskin, R.L., “Ignition and Extinction of Liquid Fuel Drops Numerical Computations”, Combustion and Flame, Vol.13, pp.166-172, 1969.
6.Prakash, S. & Sirignano, W.A., “Liquid Fuel Droplet Heating with Internal Circulation”, Int. J. Heat Mass Transfer, Vol.21, pp.885- 895, 1978.
7.Prakash, S. & Sirignano,W.A., “Theory of Convective Droplet Vaporization with Unsteady Heat Transfer in the Circulating Liquid Phase”, Int. J. Heat Mass Transfer, Vol.23, pp.253-268, 1980.
8.Abramzon, B. & Sirignano, W.A., “Droplet Vaporization Model for Spray Combustion Calculation”, Int. J. Heat Mass Transfer, Vol.32, No.9, pp.1605-1618, 1989.
9.Chiang, C.H., Raju, M.S. & Sirignano, W.A., “Numerical Analysis of Convecting Vaporizing Fuel Droplet with Variable Properties”, Int. J. Heat Mass Transfer, Vol.35, No.5, pp.1307-1324, 1992.
10.Suzuki, T. & Chiu H.H., “Multi-Droplet Combustion of Liquid Propellant”, Proceedings of 9th Int. on Space Technology & Science, Tokyo, Japan, pp.145-154, 1971.
11.Chigier, N. & McCreath, C.G., “Combustion of Droplets in Spray”, ACTA Astronautica, Vol.1, pp.687-710, 1974.
12.Onuma, Y. & Ogasawara, M., “Studies on the Structure of a Spray Combustion Flame”, 15th Symposium (Int) on Combustion, pp.561-567, 1974.
13.Chiu, H.H. & Liu, T.M., “Group Combustion of Liquid Droplets”, Combustion Science & Technology, Vol.17, pp.127-142, 1977.
14.Chiu, H.H., Kim, H.Y. & Croke,E.J., “Internal Group Combustion of Liquid Droplets”, 19th Symposium (Int) on Combustion, pp.971-980, 1982.
15.Kim, H.Y. & Chiu, H.H., “Group Combustion of Liquid Fuel Sprays”, AIAA 21st Aerospace Sciences Meeting, Rano, Nevada, 1983.
16.Sichel, M. & Palaniswamy, “Sheath Combustion of Sprays”, 20th Symposium (Int) on Combustion, pp.1789-1798, 1984.
17.Annamalai, K., “Evaporation and Combustion of a Cloud of Drops”, ASME, HTD Vol.45, pp.27-35, 1985.
18.Laaster, W.R. & Annamalai, K., “Ignition Delay of Droplet Clouds: Results from Group Combustion Theory”, National Heat Transfer Conference ASME, HTD Vol.106, pp.415-422, 1989.
19.Mizutani, Y., Nakake, K., Matsumato, Y., Saeki, T. & Matsui, T., “Processing of Luminescent Radical Images for Flame Diagnostics”, JSME Int.J. Serial II, Vol.32, pp.455, 1989.
20.Huang, J.S., “Canonical and Renormalized Theory of Droplet”, Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, Republic of China, 1995.
21.Lin, C.L., “Selected Problems on Interfacial Transport Phenomena in Two-Phase
Systems”, Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, Republic of China, 1996.
22.Chang, S.S., “Steady and Non-steady Combustion of Droplet and Fuel Sprays in High Temperature Environment”, Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, Republic of China, 1996.
23.Chiu, H.H., “Canonical Integration Method and Its Application in Droplet and Spray Combustion”, Lecture Note of CIM: Institute of Aeronautics and Astronautics, National Cheng Kung University, 1991.
24.Chen, W.S., “Interphase Exchange Phenomena of a Convective Liquid Droplet (Canonical Droplet Theory)”, Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan. Republic of China, 1993.
25.Chiu, H.H. & Hu L.H., “Theory State Transition of an Isolation Droplet”, Proceedings of 35th Japan Symposium on Combustion, pp.395-297, 1997.
26.Chiu, H.H. and Tsai, H.L., “Laws of Interfacial Regression of Hybrid Propellant”, Proceedings of 2nd Asia-Pacific Conference on Combustion, pp.243-246, 1999.
27.Armstrong, D.L. & Stirrat, G.F., “Ford’s 1982 3.8L V6 Engine”, SAE 820112, pp.350-368, 1982.
28.Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw Hill, Inc. 1988.
29.Heywood, J.B., Higgins, J.M., Watts, P.A. & Tabaczynski, R.J., “Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions”, SAE 790291, 1979.
30.http://www.biodiesel.org & http://www.biodiesel.co.uk
31.http://www.soybean.org.tw/tech6-1.htm
32.http://www.recycle.org.tw/polynews/POLY11-4.htm
33.Han, Z. & Reitz, R.D., “Turbulence Modeling of Internal Combustion Engines Using RNG Models”, Combustion Science and Technology, vol. 106, pp.267-295, 1995.
34.Chiu, H.H., Invited Chapter on “Modeling of Liquid-Propellant Combustion in Rocket Engine Combustor”, in America Institute of Aeronautics and Astronautics: AIAA Book on “Liquid Rocket Combustion Devices: Aspects of Modeling, Analysis, and Design”, 2001.
35.Liu, A.B. & Reitz, R.D., “Modeling the Effects of Drop Drag and Breakup on Fuel Sprays”, SAE Paper No. 930072, pp.83-94, 1993.
36.Reitz, R.D., “Modeling Atomization Processes in High-Pressure Vaporizing Sprays”, Atomization and Spray Technology, Vol. 3, pp. 309-337, 1987.
37.Reitz, R.D. & Diwakar, R., “Structure of High-Pressure Fuel Sprays”, SAE Paper No.870598, pp.492-509, 1987.
38.Patterson, M. A. & Reitz, R.D., “Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission”, SAE Paper No.980131, pp.27-43, 1998.
39.Mawid, M., and Aggarwal, S.K., “Chemical Kinetics Effects on the Ignition of a Fuel Droplet”, Combustion Science and Technology, vol.65, pp.137-150, 1989.
40.Kong, S.C. & Reitz, R.D., “Multidimensional Modeling of Diesel Ignition and Combustion Using a Multistep Kinetics Model”, Journal of Engineering for Gas Turbine and Power, vol.115, pp.781-789, 1993.
41.Reitz, R.D. & Rutland, C.J., “Development and Testing of Diesel Engine CFD Models”, Progress in Energy and Combustion Science, vol.21, pp.173-196, 1995.
42.Halstead, M.P., Kirsch, L.J. & Quinn, C.P., “The Autoignition of Hydrocrabon Fuels at High Temperatures and Pressures - Fitting of a Mathematical Model”, Combustion and Flame, vol.30, pp.45-60, 1977.
43.Kong, S.C., Han, Z., & Reitz, R.D., “The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation”, SAE Paper No.950278, pp.502-518, 1995.
44.Kong, S.C., & Reitz, R.D., “Spray Combustion Processes in Internal Combustion Engines”, Invited Book Chapter, Progress in Astronautics and Aeronautics, Recent Advances in Spray Combustion, K. Kuo, Ed., vol.2, pp.395-424, 1996.
45.Borman, G.L. & Ragland, K.W., Combustion Engineering, McGRAW-Hill, 1998.
46.Dee, J.E., “A Conceptual Model of Dl Diesel Combustion Based on Laser-Sheet Imaging”, SAE Paper No.970873, pp.1319-1348, 1997.
47.Chiu, H.H., “Advances and Challenges in Droplet and Spray Combustion. 1. Toward a unified theory of droplet aerothermochemistry”, Progress in Energy and Combustion Science, vol.26, pp.381-416, 2000.
48.Chen, G. and Gornez, A., “Dilute Laminar Spray Diffusion Flames near Transition from Group Combustion to Individual Drop let Burning”, Combustion and Flame, vol.110, pp.392-404, 1997.
49.Hirt, C.W., Amsden, A.A. & Cook, J.L., “An Arbitrary Lagrangian – Eulerian Computing Method for All Flow Speeds”, Journal of Computational Physics, vol.14, pp.227-253, 1974.
50.Riavard, W.C., Farmer, O.A. & Bulter, T.D., “RICE: A Computer Program for Multi-component Chemically Reactive Flows at All Speeds”, Los Alamos Scientific Laboratory Report, LA-5812-MS, 1979.
51.Butler, T.D., Cloutman, L.D., Dukowicz, J.K., & Ramshaw, J.D., “CONCHAS: An Arbitrary Lagrangian - Eulerian Computer Code for Multicomponent Chemically Reactive Fluid Flow at All Speeds”, Los Alamos Scientific Laboratory Report, LA-8129-MS, 1979.
52.Cloutman, L.D., Dukowicz, J.K., Ramshaw, J.D. & Amsden, A.A., “CONCAS-SPRAY: A Computer Code for Reactive Flow with Fuel Sprays”, Los Alamos Scientific Laboratory Report, LA-9294-MS, 1982.
53.Amsden, A.A., Butler, T.D., O’Rourke, P.J. & Ramshaw, J.D., “KIVA-A Comprehensive Model for 2-D and 3-D Engine Simulation”, SAE paper 850554, pp.1-15, 1985.
54.Giangregorio, R., Zhu, Y., Reitz, R.D., “Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine”, SAE paper 930869, pp.1241-1253, 1993.
55.Reitz, R.D., Giangregorio, R., Hampson, G., Hessel, R., Kong, S., Liu, A., Mather, D., Nehmer, D., Patterson, M., Pieper, C., Tow, T., Zhu, Y. & Rutland, C.J., “Progress in Diesel Engine Intake Flow and Combustion Modeling”, SAE paper 932458, pp.2062-2072, 1993.
56.Tsai, H.L., “Advanced Diesel Engine Combustion Modeling and Simulation – Structures, Complexities and Performance”, Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, Republic of China, 2001.
57.Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing
Corporation, Washington D.C., 1980.
58.Giangregorio, R.P., Zhu, Y. & Reitz, R.D., “Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine”, SAE paper 930869, pp.1241-1253, 1993.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊