( 您好!臺灣時間:2022/01/16 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hong-Yi Chen
論文名稱(外文):Performance and Design Analysis of Hybrid Rocket Combustor
指導教授(外文):Huei-Huang Chiu
外文關鍵詞:hybrid rocket
  • 被引用被引用:3
  • 點閱點閱:738
  • 評分評分:
  • 下載下載:78
  • 收藏至我的研究室書目清單書目收藏:0
近代火箭應用的範圍越來越多樣化,因此為了提昇發射能量以及次世代發射載具之發展,數種推進系統被提出來廣泛地研究,例如:固態火箭、液態火箭、混合式火箭和氣態火箭等等。而混合式火箭(Hybrid Rocket)是在這數個推進系統中擁有大量減低成本、提高安全性、可靠度及飛行性能的一種發射載具。
本文主要目的是利用數值模擬方法針對混合火箭燃燒室進行數值模擬,並與實驗所量測之數據做分析比對,以確定合理性。由於在燃燒室的數值模擬與理論分析上,已經累積相當多的研究成果,尤其是固態燃料之退縮率(Regression rate)。因此本研究將試圖改變氧化劑噴入燃燒室之速度與壓力來做探討;另外藉由改變氧化劑流量,來觀察固態燃料退縮率之變化情形。於固態燃料之平均退縮率圖中可知由數值計算之退縮率與實驗量測之退縮率,其吻合度相當良好。
Hybrid rocket offers many advantages which merit practical application as potential space propulsion systems and has been studies over the past decades. The hybrid rocket propulsion system concept in which one component of the propellant is stored in liquid phase while the other is stored in stored in solid phase. Such systems most commonly employ a liquid oxidizers and solid fuel. But in our study, we use gaseous oxygen as the oxidizer.
In hybrid rocket combustor concept, oxidizer is injected in to a precombustion or vaporization chamber upstream of the primary fuel grain. The fuel grain contains numerous axial combustion ports that generate fuel vapor to react with the injected oxidizer. An aft mixing chamber is employed to ensure that all fuel and oxidizer are burned before exiting the nozzle. The main advantages of a hybrid rocket are : (1) safety during storage and fabrication ; (2) start-stop-restart capabilities ; (3) relatively low system cost ; (4) higher specific impulse than solid rocket and higher density-specific impulse than liquid rocket.
In our study, we will use numerical simulation method to analyze the hybrid rocket combustor. The numerical simulation conceives that a pipe with solid fuel surrounded and inlet flow is oxidant with high temperature. The inlet flow is turbulent. After obtain the flow information of the flow field, we can realize what parameters and mechanisms will effect the regression rate.
第一章 導論
1-1 序論
1-2 研究動機
1-3 文獻回顧
1-4 本文概述
第二章 燃燒流場物理及數學模式
2-1 簡介
2-2 數學及物理模式
2-2-1 數學模式
2-2-2 物理模式
第三章 數值方法
3-1 簡介
3-2 格點系統
3-3 流場數值推導計算
3-4 收斂標準
3-5 求解步驟
第四章 結果與討論
4-1 燃燒室行為分析
4-2 流場資訊分析
第五章 結論與建議
第六章 未來工作
1.Sutton, G.P., Rocket Propulsion Elements: An Introduction to the Engineering of Rockets, Wiley Press, 6th ed, 1992.
2.Carl Sagan, Pale Blue Dot: a vision of the human future in space, Allantine Books, 1997.
3.D. Altman, “Hybrid Rocket Development History,” AIAA Paper 91-2515, June, 1991.
4.Sutton, G. P., Rocket Propulsion Elements: An Introduction to the Engineering of Rockets, Wiley Press, 7th ed., 2000.
5.Marxman, G. A., and Gilbert, G. M., “Turbulent Boundary Layer Combustion in the Hybrid Rocket,” 9th Symposium on Combustion, pp.371-387, 1963.
6.Smoot, L. D., and Price, C. F., “Regression Rates of Nonmetalized Hybrid Fuel Systems,” AIAA Journal, Vol. 3, No. 8, August 1965, p. 1408-1413.
7.Greiner, B., and Grederick, R. A. Jr., “Results of Labscale Hybrid Rocket Motor Investigation,” AIAA Paper No. 92-3301, 1992.
8.Strand, L., Ray, R. and Anderson, F., “Hybrid Rocket Fuel Combustion and Regression Rate Study,” AIAA Paper No. 92-3302, 1992.
9.Strand, L., Ray, R. and Anderson, F., “Hybrid Rocket Fuel Combustion and Regression Rate Study,” AIAA Paper No. 92-3302, 1992.
10.Strand, L., Ray, R. and Anderson, F., “Hybrid Rocket Combustion Study,” AIAA Paper No. 93-2412, 1993.
11.Kenneth, k. kuo and Yeu-Cherng Lu, Thermochimica Acta275 (1996) p.181-191.
12.Arisawa, H. and Brill, T. B., Combustion and Flame, 106 (1996) p.131-143.
13.Bouck, L. S., Bear, A. D., and Ryan, N. W., Fourteenth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, 1973, p1165-1176.
14.Golub, M. A., and Gargiulo, R. J., J. Polym. Sci. Polym. Lett.10:41-49, 1972.
15.Chiaverini, M. J., Serin, N., Johnson, D. K., Lu, Y. C., Kuo, K. K., Risha, G.A., ”Fuel Decomposition and Boundary Layer Combustion Processes of Hybrid Rocket Motors,” AIAA Paper 95-2686, 1995.
16.Chiaverini, M. J., Serin, N., Johnson, D. K., Lu, Y. C., Kuo, K. K., Risha, G.A., “Thermal Pyrolysis and Combustion of HTPB-Based Solid Fuels for Hybrid Rocket Motor Applications,” AIAA Paper No. 96-2845, 1996.
17.Chiaverini, M. J., Serin, N., Johnson, D. K., Lu, Y. C., Kuo, K. K., Risha, G.A., “Pyrolisis Behavior of Hybrid Rocket Solid Fuels Under Rapid Heating Conditions,” AIAA Paper No. 97-3078, 1997.
18.施耿維, “混合推進劑燃燒組織與性能”, 國立成功大學航空太空工程研究所碩士論文, 1999.
19.李俊明, 施耿維, “混合火箭初步設計及研究”, 中國航空太空學會會刊第三十一卷第三期, p.235-240, 1999
20.林湧豐, “混合火箭燃燒特性之研究”, 國立成功大學航空太空工程研究所碩士論文, 2000.
21.張家軒, “混合火箭推進劑燃燒特性研究”, 國立成功大學航空太空工程研究所碩士論文, 2001.
22.Helman, D., Wolfshtein, M., and Manheimer-Timnat, Y., “Theoretical Investigation of Hybrid Rocket Combustion by Numerical Methods,” Combustion & Flame, Vol.22, pp.171-190, 1974.
23.Gany, A., Manheimer-Timnat and Wolfshtein, M., “Two-phase Flow Effects on Hybrid Combustion,” Acta Astronautica, Vol.3, pp.241-263, 1976.
24.Loh, H.T. et al., “Computational of Viscous Chemically Reacting Flows in Hybrid Rocket Motors Using an Upwind LU-SSOR Scheme,” AIAA Paper 90-1570, 1990.
25.Altman, D., Estey, P. N., McFarlane, J.S., “An Evaluation of Scaling Effects for Hybrid Rocket Motors,” AIAA paper 91-2520, 1991.
26.Mark Salita, “Comparison of Four Boundary Layer Solutions for Fuel Regression Rate in Classical Hybrid Rocket Motors,” AIAA paper 91-2520, 1991.
27.Kenneth, K. Kuo, Chiaverini, M. J., Peretz, A., Harting, G. C., “Heat Flux and Internal Ballistic Characterization of a Hybrid Rocket Motor Analog,” AIAA paper 97-3080, 1997.
28.Arif Karabeyoglu, M. and Altman, D., “Dynamic Modeling of Hybrid Rocket Combustion,” Journal of Propulsion and power, Vol. 15, No.4, pp.562-571, 1999.
29.Akyuzlu, K. M. et al, “A Parametric study of Flame Propagation in Hybrid Rocket Motors,” AIAA paper 98-3189, 1998.
30.Cherng, D.L., Tao, C.C., “Analysis of Hybrid Rocket Combustion,” Acta Astronautica, Vol.7, pp.619-631, 1980.
31.Chiu, H. H. and Lin C. L., ” Numerical Analysis of Spray Combustion in Hybrid Rocket,” AIAA paper 95-2687, 1995.
32.Chiu, H. H. and Lin, C. L. “Performance Characteristics of Hybrid Rocket for Space Applications,” IAF 95-S.1.01, 46th International Astronautical Congress, 1995. & published in Space Technology, Vol.16, No.1, 1996.
33.Chiu, H. H. and Jiang T. L., ”Spray Group Combustion in a Cylinderical Nonpremixed Combustor,” Atomization and Sprays 3, pp. 203-221, 1993.
34.陳維新, “熱對流油滴之異向輸送現象(正準油滴理論)” , 國立成功大學航空太空工程研究所博士論文, 1993.
35.胡禮和, “固態推進劑燃燒特性分析” , 國立成功大學航空太空工程研究所碩士論文, 1994.
36.林志隆, “雙相流介面輸送現象之特殊問題” , 國立成功大學航空太空工程研究所博士論文, 1996.
37.Chiu, H.H. and Tsia, H.L. “Laws of Interfacial Regression of Hybrid Propellant,”Proc. 2nd Asia-Pacific Conf. On Combustion ASPACC-2, pp.243-246, 1999.
38.蔡照暉, “混合式火箭的設計與性能分析” , 國立成功大學航空太空工程研究所碩士論文, 1999.
39.陳艮彥, “混合推進劑燃燒之正準理論-退縮率、結構及性能” , 國立成功大學航空太空工程研究所碩士論文, 2000.
40.Chiu, H.H., and Zhou, X.Q., “Fundamental Equations for Chemically reacting, multi-phase, multicomponent, turbulent flow system,” to be published University of Illinois at Chicago, Illinois, 1982.
41.Spalding, D.B., “Mathematical Models of Turbulent Flames: A Review,” Combustion Sci. Technol., Special Issue on Turbulent Reacting Flow, Vol.13, pp.3-25, 1976.
42.Bayson, F., Ayers, W.H., Swithenbank, J., and Pan, Z., “Three-Dimensional Model of Spray Combustion in Gas Turbine Combustors,” Journal of Energy, Vol.6, No.6, pp.368-375, 1982.
43.Jones, W. P. and Launder, B.E., “The Prediction of Laminarization with a Two-equation Model of Turbulence,” Int. Heat Mass Transfer Vol.15, pp.301-314, 1972.
44.Yam, C. and Dwyer, H. “An Investigation of the Influence of Blowing and Combustion on Turbulent Wall Boundary Layers,” AIAA Paper, 87-0226, 1987.
45.Netzer, D.W., “Modeling Solid-Fuel Ramjet Combustion,” J. Spacecraft, Vol.14, No.12, pp.762-766, 1977.
46.Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Wastington, D.C., 1980.
47.Patankar, S.V., “A Calculation Procedure for Two-Dimensional Elliptic Situation,” Numerical Heat Transfer, Numerical Heat Transfer, Vol.4, pp.409-524, 1981.
48.Philmon George and S. Krishman et al, “Fuel Regression Rate in Hydroxyl-Terminated-Polybutadiene / Gaseous-Oxygen Hybrid Rocket Motors,” Journal of Propulsion and power, Vol. 17, No.1, pp.35-42, 2000.
49.Waidmann, W., “Thrust Modulation in Hybrid Rocket Engines,” Journal of Propulsion, Vol.4, No.3, pp.421-427, 1988.
50.Lauder, B.E. and Spalding, D.B., “The Numerical Computation of Turbulent Flows,” Comput. Math. Appl. Mech. Eng., Vol.3, pp.267-289, 1974.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top