跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 14:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張嘉原
研究生(外文):Chia-Yuan Chang
論文名稱:有限翼展在低雷諾數下之氣動力研究
論文名稱(外文):Aerodynamic Performance Investigation For Finite Wing at Low Reynolds Number
指導教授:蕭飛賓
指導教授(外文):Fei-Bin Hsiao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:108
中文關鍵詞:翼尖窩流三維效應低雷諾數低展弦比
外文關鍵詞:tip vortexlow aspect ratiothree-dimension effectlow Reynolds number
相關次數:
  • 被引用被引用:7
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用風洞實驗以探討有限機翼在低展弦比以及低雷諾數下的氣動力特性。在氣動力參數量測方面,機翼的升力、阻止以及俯仰力距可利用三力平衡儀量得,為了輔證所得到的資料,也利用表面油流實驗去觀察翼表面的流場變化,除此之外,為了提升本機翼在高攻角時的氣動力特性,在翼前緣附近也安置了利用微機電技術所製造的微泡致動器。實驗結果顯示,在低雷諾數下的流場會存在有三種雷諾數模態,它們分別是次臨界、臨界、以及超臨界雷諾數模態,在不同的雷諾數模態下會有很不同的氣動力特徵,而這模態會隨雷諾數以及攻角而變化;當雷諾數愈高時,由次臨界雷諾數轉換至臨界雷諾數所需的攻角愈低,而不同模態下的流場情形也可經由油流實驗中觀察得知。除此之外,在表面油流實驗中,也可以發現在翼尖端的分離泡很明顯受到翼尖渦流的影響,此時在翼尖端的分離泡會比翼中央來的小。從展弦比為1的氣動力參數分析,可以發現此時的流場特性很明顯的受到翼尖渦流的影響,即三維效應變的很明顯,雖然翼尖渦流可能促進雷諾數模態的提早發生,但是整體的氣動力性能會相對的降低很多。對於次臨界雷諾數範圍下,微泡致動器可以有效提升微飛機的氣動力特性,且激擾位置在靠近層流分離點附近其效果最大。但隨著雷諾數的持續增加,其效益會逐漸降低,甚至產生反效果。
This thesis is intended to study experimentally the aerodynamic performance of the finite wing at low aspect ratios and in low Reynolds numbers by means of the wind tunnel testing. The 3-component force/moment balance and surface oil-flow technique are respectively used to study the aerodynamic performance and flow field characteristics about the wing. The bubble actuator made of Micro-electrical-mechanical system (MEMS) technique is employed and installed around the leading edge to enhance the aerodynamic performance in high angles of attack of the wing. Results indicate that three different Reynolds number modes of aerodynamic performance are found as functions of the Reynolds number and the angle of attack both in the operating ranges. That is, the subcritical, critical, supercritical behaviors of the aerodynamic performance can be characterized in terms of the Reynolds number and angle of attack as well. For the lower aspect ratio of the wing tested, the 3-dimensional, tip-vortex effect will be more significant in influencing the aerodynamic performance, which is also witnessed by the oil-flow visualization. Within the subcritical Reynolds number range, the bubble actuator can effectively improve the aerodynamic performance of the wing, especially when the actuator is situated close to the separation point of the boundary layer over the upper wing surface. However, it is less effective on the aerodynamic performance when the operating Reynolds number is greater than the critical value. The efficiency of the bubble actuator excitation gets even unfavorable when the Reynolds number increases to some extent beyond the critical one.
CONTENTS

ACKNOWLEGEMENTS……………………………………………….………………i
ABSTRACT IN CHINESE…..………………………………………..………………..ii
ABSTRACT IN ENGLISH….……….…………………………………..……………..iii
CONTENTS………………………..………………………..……….………………….iv
LIST OF TABLES…..…………….……………………………..……………………...vi
LIST OF FIGURES…..…………….………………………………..………………....vii
NOMENCLATURE……………..…………………………………….…………….…..xi

CHAPTER
I. INTRODUCTION……..….……………….………………………...…………….…..1
1.1 Flow Properties for Low Reynolds Number Flow Field………………….…..2
1.1.1 Definition of three Reynolds number mode………………………...3
1.1.2 Problems meet at low Reynolds number flow field…………..…….6
1.2 Surface Flow Control.……………………...…..……………………….……..7
1.3 Motivations and Objectives……………………………………...………….….9

II. EXPERIMENTAL APPARATUS AND MODELS…………..………...…….……11
2.1 Wind Tunnel…………………………………………………………….……11
2.2 Instrumentation and Data Acquisition System………………………….……11
2.3 Test Models…………………………..………………………………………12
2.4 Design of Flow Control Device………...………………………….…….…..13

III. AIRFOIL DESIGN AND EXPERIMENTAL PROCEDURES………...……….14
3.1 Airfoil Design………………………………………………………………..14
3.1.1. Basic theory………………………………………………………14
3.1.2. Design process…..………………………………………………...15
3.1.3. Parameter study…..….……………………………………………16
3.1.4. Discussions and results of airfoil design…………………….…….20
3.2 Finite Wing Models and Testing Conditions………………………………...21
3.3 Surface Oil-Flow Experiments……………………………….…………..….22
3.4 Surface Flow Control………………………..…………………………..…...23

IV. RESULTS AND DISCUSSIONS………..…………………………………………24
4.1 Basic Flow Field Characteristics for 3-D Wing……………………….……..25
4.1.1. Aerodynamic characteristics for AR = 4.2……..…………..……...25
4.1.2. Aerodynamic characteristics for AR = 2…………..……………....29
4.1.3. Aerodynamic characteristics for AR = 1……..……………………31
4.2 Results of Surface Oil-Flow Visualization…………………...……………...32
4.3 Aspect Ratio Effect on Finite Wing at Low Reynolds Number………….…..33
4.4 Results of Flow Characteristics by Bubble Actuator…….…………...……...36

V. CONCLUDING REMARKS.……………………….…………………….………...39
REFERENCES…………………………...……………………………………………..41
APPENDIX…………………………..….……………………………………………....45
TABLES………………………………………………………………………………....46
FIGURES..……………..………………….………………………………………….....48
References
1. Jones, B. M., “An Experimental Study of the Stalling of Wings,” NACA Reports and Memoranda No. 1588, December 1933.
2. Schmitz, F. W., “The Aerodynamics of small Reynolds Number,” NASA TM-75816, June 1980.
3. Bursnall, W. J. and Loftin, L. K., “Experimental Investigation of Localized Regions of Laminar Boundary Layer Separation,” NACA-TN-2338, April 1951.
4. Mueller, T. J. and Jansen, B. J., “Aerodynamic Measurements at Low Reynolds Numbers,” AIAA paper 82-0598, March 1982.
5. Moore, T. W. F., “Some Experiments on the Reattachment of a Laminar Boubdary Layer Separation From a Rearward Facing Step on a Flat Plate Airfoil,” Journal of the Royal Aeronautical Society, November 1960.
6. Ward, J. W., ”The Behavior and Effects of Laminar Separation Bubbles on Airfoils in Incompressible Flow,” Journal of the Royal Aeronautical Society, Volume 67, December 1963.
7. LeBalanc, P., Liebeck, R. H. & Balackwelder, R., ”Boundary Layer and Performance Characteristics from Wind Tunnel Tests of a Low Reynolds Number Liebeck Airfoil,” Proceeding of the Aerodynamics at Low Reynolds Numbers, The Royal Aeronautical Society, Vol. 1, Paper 8, 15th-18th, Oct. 1986.
8. Muller, T. J., ”Low Reynolds Number Vehicles,” Edited by E. Reshotko, AGARD-AG-288, Feb. 1985.
9. Althaus, D., ”Recent Wind Tunnel Experiments at Low Reynolds Numbers,” Proceedings of the Conference on Aerodynamics at Low Reynolds Numbers, The Royal Aeronautical Society, Vol. 2, Paper 18, 15th-18th Oct. 1986.
10. Marchman, J.F., ”Aerodynamic Testing at Low Reynolds Numbers,” Journal of Aircraft, Vol. 24, No. 2, Feb. 1987.
11. Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,” AIAA-84-1617, June 1984.
12. Mueller, T. J., “The Influence of Laminar Separation and Transition on Low Reynolds Number Airfoil Hysteresis,” Journal of Aircraft, Vol. 22, No. 9, pp. 7632, sep. 1985.
13. Martin Simon, Model Aircraft Aerodynamics, Argus Books Limited. 1985.
14. Schmitz, F. W., “The Aerodynamics of small Reynolds Number,” NASA TM-75816, June 1980.
15. Lissaman, P. B. S., ”Low Reynolds Number Airfoils,” Ann. Rev. of Fluid Mech., pp. 223, 1983.
16. Mangalam, S. M., Bar-Sever, A., Zaman, K. B. M. Q. and Harvey, W. D., ”Transition and Separation Control on a Low Reynolds Number Airfoil,” Proceedings of the Conference on Aerodynamic at Low Reynolds Numbers, The Royal Aeronautical Society, Vol. 1,paper 10, 15th-18th Oct.1986.
17. McMaster, J. H., and Henderson, M. L., ”Low Speed single Element Airfoil Synthesis,” Technical Soaring, Vol. 6, pp. 1-21, 1980.
18. Selig, M.S., Maughmer, M.D., “A Multi-Point Inverse Airfoil Design Method Based on Conformal Mapping,” AIAA Journal, Vol. 30, No. 5, 1992, pp. 1162-1170.
19. Selig, M. S. and Maughmer, M. D., “Generalized Multipoint Inverse Airfoil Design,” AIAA Journal, Vol. 30, No. 11, 1992, pp. 2618-2625.
20. Eppler, R., Airfoil Design and Data, Springer-Verlag, New York, 1990.
21. Wormann, F.X., “Progress in the Design of Low Drag Airfoils,” Boundary Layer and Flow Control, edited by Lachmann, G. V., Pergamon, London, 1961, pp. 748-770.
22. Wormann, F.X., “A Critical Review of the Physical Aspects of Airfoil Design at Low Mach Numbers,” Motorless Flight Research, edited by Nash-Weber, J.L., NASA CR2315, Nov. 1973.
23. Gopalarathnam, A. and Selig, M. S., “Low-Speed Natural-Laminar-flow Airfoils: Case Study in Inverse Airfoil Design”, Journal of Aircraft, Vol. 38, NO. 1, Jan-Feb, 2001.
24. Maltby, R. L., Flow Visualization in Wind Tunnel Using Indicator, AGARDograph 70, Apr. 1962.
25. Hunt, J.C.R., Abell, C.J., Peterka, J.A. and Woo, H., “Kinematical Studies of the Flows Around Free or Surface-Mounted Obstacles;Applying Topology to Flow Visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
26. Tobak, M. and Peake, D. J. “Topology of Three Dimensional Separated Flow” Annual Review of Fluid Mechanics, Vol. 14, 1982, pp. 61-85.
27. Anderson, J. D. Jr., Fundamental of Aerodynamics, 2nd Edition, McGraw-Hill, 1991.
28. Roskam, J. Method for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes, University of Kansas, 1971.
29. Carmichael, B. H., “Low Reynolds Number Airfoil Survey,” NASA CR-1658036, 1981.
30. Torres, G.E., and Mueller, T.J., “Aerodynamic Characteristics of Low-Aspect Ratio Wings at Low Chord-Reynolds-Numbers,” Proceedings of the Conference on Fixed, Flapping and Rotary Wing Vehicle at very Low Reynolds Number, edited by Mueller, T.J., Univ. of Notre Dame, Notre Dame, IN, 2000.
31. Hsiao, F. B., Liu, C. F. and Shyu, J. Y., "Control of Wall-Separated Flow by Internal Acoustic Excitation," AIAA Journal, Vol. 28, No. 8, Aug. 1990, pp. 1440-1446.
32. Hsiao, F. B., Yang, M.H., Hsu, C.C., Chen, C. Y. and Liang, P. F. “Experimental Study of Aerodynamic Characteristics about a Fixed-Wing Micro Aerial Vehicle”, 1st International Conference on Heat Transfer, Fluid Dynamics and Thermodynamics, Kruger National Park, South Africa, 8-10 April 2002.
33. Gad-el-Hak, M. “Micro-Air-Vehicle: Can they be controlled Better?”, Journal of Aircraft, Vol. 38, No. 3 , May-June 2001.
34. http://amber.aae.uiuc.edu/~m-selig/profoil.html
35. www.dreesecode.com
36. Lighthill, M. J., “A New Method of Two-Dimensional Aerodynamics Design,” Aeronautics Research Council, R&M 2112, England, UK, April 1945.
37. Liebeck, R. H., “A Class of Airfoils Designed for High Lift in Incompressible Flow,” Journal of Aircraft, Vol. 10, No. 10, Oct. 1973, pp. 610-617.
38. Liebeck, R. H., “Design of Subsonic Airfoil for High Lift,” Journal of Aircraft, Vol. 15, No. 9, Sep. 1978, pp. 547-561.
39. Strand, T., “Exact Method of Designing Airfoil with Given Velocity Distribution in Incompressible Flow,” Journal of Aircraft, Vol. 10, No. 11, 1973, pp. 651-659.
40. Yang, M.H, “Design and Aerodynamic Performance Analysis of a Fixed Wing Micro Aerial Vehicle”, Institute of Aeronautics and Astronautics National Cheng Kung University, Master Thesis, 2001.
41. DARPA, Defense Advanced Research Project Agency, http://www.darpa.mil/.
42. Abbott, I.H., and von Doenhoff, A.E., Theory of Wing Section, Dover, New York, 1959, pp. 50-53.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊