跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李永平
研究生(外文):Young-Ping Lee
論文名稱:體外震波碎石機之震波聚焦對結石分解與組織傷害之探討
論文名稱(外文):Investigation of Shock Focusing Induced Stone Disintegration and Tissue Damage on an Extracorporeal Shock Wave Lithotripsy
指導教授:尤芳忞
指導教授(外文):Fang-Ming Yu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:80
中文關鍵詞:張力波結石分解與組織傷害體外震波碎石機凝膠體
外文關鍵詞:Tensile WaveESWLGelatinStone Disintegration and Tissue Damage
相關次數:
  • 被引用被引用:5
  • 點閱點閱:267
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:1
本研究在成功大學體外震波碎石機實驗室中分別完成了,在不同放電介質特性下的體外震波碎石機之模擬結石分解實驗與模擬組織的傷害實驗。研究結果顯示真空除氣水比清水作為放電介質,可產生比較大之聚焦點上最大壓力以及比較大之放電時之接地電流量,也因而具有較佳的結石分解特性,此結果可分別由發泡煉石與肺石等二種模擬結石之分解過程圖片中予以驗證,然而伴隨巨大聚焦壓力後的強大張力波即是造成空蝕誘導組織傷害的元兇,本實驗觀察中發現清水造成密集式的傷害,真空除氣水則造成比較分散式的傷害,在減少組織傷害並維持結石分解能力的目標下,於實驗中發現,於真空除氣水與清水中分別加入適量的清潔劑時,於放電後的聚焦點上前者可產生比較高的最大聚焦壓力與最少的負壓值,此結果顯示,真空除氣水與清潔劑的組合作為放電介質可能達到分解結石且減少組織傷害的目的。
An investigation on stone disintegration and tissue damage by an Extracorporal Shock Wave Lithotriptor (ESWL) under different characteristics of current-discharging medium has been conducted in the ESWL Laboratory in National Cheng Kung University. The experimental results indicate that for degassed water the maximum pressure measured at the focal point are much higher than that for tap water. This is due to high grounding current in degassed water. Such a higher pressure on the focal point has a direct contribution to stone disintegration. The sample stones used are leca stones and pneumolith stones. However, to relieve tissue damage caused by cavitation generated by a negative pressure following the positive pulse of a shock, it is necessary to reduce the negative pressure, but retaining a high enough positive pressure. It has been observed that with adding a proper amount of liquid detergent in degassed water, the ratio of the maximum positive pressure to the maximum negative pressure is higher than that without detergent. It is concluded that the degassed water with detergent is a good candidate as a current-discharging medium for an ESWL, since the suggested medium can produce good characteristics of stone disintegration and of reducing tissue damage.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vi
符號說明 viii
第一章 緒論 1
1-1研究動機與目的 1
1-2文獻回顧 1
第二章 理論分析 4
2-1體外震波基本原理 4
2-1.1 球震波之基本特性 4
2-1.2震波反射之基本型態 5
2-1.3爆震波聚焦的基本特性 6
2-1.4體外震波碎石機之應用原理 7
2-2 空蝕現象在體外震波碎石的角色 8
2-3 體外震波碎石機之結石分解與組織傷害原理 9
2-3.1 簡介震波碎石機制 9
2-3.2 組織傷害成因 10
2-3.3 壓力與張力破壞模式 11
2-3.4裂縫的成長-聚合區理論 12
2-3.5 結石分裂的推手-剝離模式 13
2-3.6 動態疲勞破壞 14
2-3.7組織傷害減低的條件 18
第三章 實驗設備、方法及步驟 21
3-1實驗設備 21
3-1.1體外震波碎石機設備 21
3-1.2壓力量測系統 22
3-1.3資料擷取系統 23
3-1.4真空除氣系統與水含氧量感測器 23
3-1.5震波傳遞介質之導電度計 24
3-1.6凝膠體測試平台 24
3-2實驗方法 24
3-3實驗步驟 25
第四章 結果與討論 30
4-1 聚焦點處震波性能 30
4-2 接地電流比較 31
4-3 結石粉碎結果 31
4-4 凝膠假體模擬分析 32
4-5 張力波的改善 33
第五章 結論與建議 35
5-1 結論 35
5-2 建議 36
參考文獻 37
自述 80
著作權聲明 81
[1]E. Bailitis, “Schallimpuls Eines Flüssigkeitsfunkens,” Zeitschrift für angewandte Physik einschlieβlch Nukleonik, Vol. 9, pp. 429-434, 1957.

[2]E. Häusler and W. Kiefer, “Anregung von Stosswellen in Flüssigkeiten durch Hochgeschwindigkeitswassertropfen,” Verh Dtsch Physik Ges, Vol. 10, pp. 36, 1971.

[3]C. Chaussy, E. Schmiedt, D. Jocham, J. Schuller, H. Brendel and B. Liedl, “Extracorporeal Shock-Wave Lithotripsy (ESWL) for Treatment of Urolithiasis”, Urology, Vol. 93, pp. 59, 1984.

[4]C. Chaussy, E. Schmiedt, D. Jocham, W. Brendel, B. Forssmann and W. Walther, “First Clinical Experience with Extracorporeally Induced Destruction of Kidney Stones by Shock Waves,” Journal of Urology, Vol. 127, pp. 417-420, 1982.

[5]J. Simon, A. Corbusier and L. A. Merdes, “Extracorporeal Shock Wave Lithotripsy for Urinary Stone Disease,” Eur. Urol., Vol., 16, pp. 7-11, 1989.

[6]B. Sturtevant, “Shock Wave Physics of Lithotriptors,” in Smith’s Textbook of Endourology, Quality Medical Publishing, Inc., pp. 529-552, 1996.

[7]T. Patrick, B. Finlayson, J. Robert, H. Gossip, C. Wallace, R. Walker, S. Walck and M. Nasr, “Measurement of Shock Wave Pressures Used for Lithotripsy,” Journal of Urology, Vol. 136, pp. 733-738, 1986.

[8]M. Müller, “Experimental Investigations on Focusing of Weak Spherical Shock Waves in Water by Shallow Ellipsoidal Reflectors,” Acustica, Vol. 64, pp. 85-93, 1987.

[9]楊智光,“體外震波碎石機反射罩杯之設計”,國立成功大學碩士論文,1998。

[10]李衍德,“水電型體外震波碎石機中電極棒之性能改進研究”,國立成功大學碩士論文,1999。

[11]顏志成,“ 水電型體外震波碎石機電極之間距控制設計”,國立成功大學碩士論文,2001。

[12]D.L. Miller and R.M. Thomas, “ Thresholds for Hemorrhages in Mouse Skin and Intestine Induced by Lithotripter Shock Waves ” Ultrasound in Med.& Boil., Vol.21, No.22, pp.249-257,1995.

[13]E.B Cornel, G.A. Smits, F.M. Debruyne, A. Heerschap, J.A. Schalken and G.O. Oosterhof, “The Effects of Successive High-Energy Shock-Wave Tumor Administration on Tumor Blood Flow, ” Ultrasound in Med. & Biol., Vol. 21, No.2, pp.243-248, 1995

[14]S. Danies, T. Kodama and D.J. Price, “ Damage to red blood cells induced by acoustic cavitation,” Ultrasound in Med. & Biol., Vol.21, No.1, pp.105-111, 1995.

[15]D.L. Miller, R.M. Thomas and R.L. Buschbom, “Comet Assay Reveals DNA Strand Breaks Induced by Ultrasonic Cavitation in Vitro,” Ultrasound in Med. & Biol., Vol.21, No.6, pp.841-848, 1995.

[16]N.C. Bird, T.J. Stephenson, B. Ross and A.G. Johnson, “Effects of Piezoelectric Lithotripsy on Human DNA,” Ultrasound in Med.& Biol., Vol.21, No.3, pp.399-403, 1995.

[17]A.S. Cass, “Comparison of First-Generation (Dornier HM3)and Second-Generation (Medstone STS)Lithotripters:Treatment Results with 145 Renal and Ureteral Calculi in Children,” Journal of Endourology, Vol.10, No.6, Dec.1996.

[18]M.T. Carnell and D.C. Emmony, “A Schlieren Study of the Interaction Between a Lithotripter Shock Wave and a Simulated Kidney Stone, ” Ultrasound in Med.& Boil. Vol.21, No.5, pp.721-724, 1995.

[19]A. Buizza, T. D. Aquila, P. Giribona and C. Spagno, “The Performance of Different Pressure Pulse Generators for Extracorporeal Lithotripsy: A Comparison Based on Commercial Lithotripters for Kidney Stones,” Ultrasound in Med.& Biol., Vol.21, No.2, pp.259-272, 1995.

[20]P. Zhong and C.J. Chuong, “ Propagation of Shock Waves in Elastic Solids Caused by Cavitation Microjet Impact. I: Theoretical formulation, ” J. Acoust. Soc. Am. 94(1), July 1993, pp.19-28.

[21]P. Zhong and C.J. Chuong, “Propagation of Shock Waves in Elastic Solids Caused by” Cavitation Microjet Impact.II: Application in Extracorporeal Shock Wave Lithotripsy, ” J. Acoust. Soc. Am. 94(1), July1993, pp.29-36.

[22]D.A. Lifshitz, J.C. Williams, B. Sturtevant, B.A. Connors, A.P. Evan and J.A. Mcateer, “ Quantitation of Shock Cavitation Damage in Vitro, ” Ultrasound in Med.& Biol., Vol.23, No.3, pp.461-471, 1997.

[23]Y. Yanagida, N. Iwama and K. Okazaki, “ Pressure Distribution for Piezoelectric Extracorporeal Shock Wave Lithotripsy, ” Jpn. J. Appl. Phys. Vol.32 (1993), pp.2490-2493, Part 1, No.5B, May 1993.

[24]Y. Tomita, T. Obara, K. Takayama and M. Kuwahara, “ Cavitation Phenomena in Extracorporeal Microexplosion Lithotripsy, ” Shock Waves (1994) 3:149-157.

[25]H. Wiksell and A.C. Kinn, “Implication of Cavitation Phenomena for Shot Intervals in Extracorporeal Shock Wave Lithotripsy,” British Journal of Urology (1995), 75,720-723.

[26]M. Lokhandwalla, “ Damage Mechanisms in Shock Wave Lithotripsy , ” Ph.D. dissertation, California, Institute of Technology , Feb.2001.

[27]D.D. Howard, “ Mechanisms of Injury Associated with Extracorporeal Shock Wave Lithotripsy ” Ph.D. dissertation, California, Institute of Technology, April.1996.

[28]C.J. Chuong, P. Zhong and G.M. Preminger, “Acoustic and Mechanical Properties of Renal Calculi Implications in Shock Wave Lithotripsy, ” Journal of Endourology Vol.7, Number 6, 1993, pp.437-444.

[29]B. Sturtevant, “ Lecture Notes for Workshop on Shock Wave Physics of Lithotriptors, ” November 1997.
http://www.galcit.caltech.edu/~brad/bioscience/litho/workshop/endo/endo.html

[30]M. Lokhandwalla and B. Sturtevant, “Fracture Mechanics Model of Stone Communication in ESWL and Implications for Tissue Damage, ” Phys. Med. Boil., Vol.45, pp.1-18, 2000.

[31]T. Kodama and Y. Tomita, “ Cavitation Bubble Behavior and Bubble-Shock Wave Interaction near a Gelatin Surface as a Study of in Vivo Bubble Dynamics, ” Appl. Phys.B 70, pp.139-149, 2000.

[32]G.B. Ben-Dor, Shock Wave Reflection Phenomena, Springer-Verlag New York, Inc., 1992.

[33]J.B. Keller, “Geometrical Acoustics. I. The Theory of Weak Shock Waves, ” J. Apply physics, Vol.25, pp.938-947, Aug. 1954.

[34]G.B. Whitham, “A New Approach to Problem of Shock Dynamics, Part 1, Two-Dimensional Problems, ”J. Fluid Mech., Vol.2, pp145-171, 1957.

[35]R.F. Chisnell, “The Motion of a Shock Wave in a Channel with Applications to Cylindrical and Spherical Shock Wave, ” J. Fluid Mech., Vol.2, pp.286-298, 1957.

[36]B. Sturtevant and V. A. Kulkarny, “The Focus of Weak Shock Waves, ” J. Fluid Mech., Vol.73, part 4, pp.651-671, 1976.

[37]“The Role of Cavitation in Extracorporeal Sock Wave Lithotripsy,” Dec.2000
http://pluto.apl.washington.edu/harlett2/artgwww/acoustic/medical/litho. html

[38]S.D. Pye and J.A. Dineley, “Characterization of Cavitational Activity in Lithotripsy Fields Using a Robust Electromagnetic Probe, ” Ultrasound in Med.& Biol., Vol.25, No.3, pp.451-471, 1999.

[39]F. Eisenberger, K. Miller and J. Rassweiler, “Extracorporeal Shock Wave Lithotripsy (ESWL), ” in Stone Therapy in Urology, Thieme Medical Publishers, Inc., pp.31-32,1991.

[40]井上潔 原著,黃錦鍾譯,放電加工 ,pp.129-130,高立圖書有限公司,1998.6出版 。

[41]李文森,解剖生理學,pp.902,華杏出版社股份有限公司,民國75年出版。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top