跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 18:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳志彥
研究生(外文):Chi-Yen Chen
論文名稱:下腹部主動脈血流流場數值模擬
論文名稱(外文):Numerical Simulation of Blood Flow Fields in an Abdominal Aorta
指導教授:李定智
指導教授(外文):Denz Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:120
中文關鍵詞:腹部主動脈數值模擬
外文關鍵詞:numerical simulationabdominal aorta
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

動脈疾病常發生在冠狀動脈、頸動脈、腹部主動脈和股動脈等等存在複雜流場的特定區域,在此區域內,由於動脈分岔、分歧和彎曲等而造成血流流場相當複雜,有別於其他區域,下腹部主動脈由於其更加複雜的幾何外型,使得在此一區域較少研究,在本研究中,將發展一套可靠的數值模擬技術來研究多分歧管流場特性,特別著重在瞭解下腹部主動脈流場的特性。
利用邊界契合座標配合區域式格點法來解決複雜幾何外型,在邊界契合座標中,採用協變速度作為動量方程式的相依變數,並配合非交錯式格點系統來進行計算,分歧管格點的產生程序亦一併發展出來。
首先先計算單分歧T型管的基本流場並與可得的實驗資料做比較,以確認程式的正確性,接著計算雙分歧管流場,以確認在不同分歧間距下流場型態的變化。
本研究中建立包含其主要分歧的下腹部主動脈模型,並分別模擬其在休息及運動狀態下的穩態及脈動流場,結果顯示,平均而言,在腎下背側的腹部主動脈區域為低/震盪剪應力區域,而在運動狀態下,此結果明顯的降低。此一低/震盪剪應力區域與臨床上常發現的動脈疾病位置相當一致。
ABSTRACT

Hemodynamic factors are thought to be responsible for the localization of vascular disease in areas of complex flow in the coronary, carotid, abdominal, and femoral arteries. In those regions, these complex flow often occur due to branching, bifurcation, and curvature of the arteries. Unlike other areas, the infrarenal aorta is much less investigated due to its complex geometry. In the present study, a reliable numerical simulation technique was developed to study the flow fields of flow in a multi-branched tube, especially, in a model of abdominal aorta.
In order to solve the problems associated with complex geometry, a boundary-fitted coordinate system together with a zonal grid method is employed. The covariant physical velocity components are selected as the dependent variables in the momentum equations and a nonstaggered grid arrangement is employed. A grid generation procedure for branch tube was also developed.
The basic flow patterns in T-junction were calculated firstly and the results were compared with the available experimental data. The flow field in a tube with two branches were then calculated to identify the interactions between the two branches. The flow field was found to be strongly affected by the distance of the two branches.
Lastly, steady and pulsatile flow fields of an abdominal aorta with its main branches were simulated under both the resting and exercise conditions. The results showed that, in average, the regions of low/oscillating wall stress occurred on the infrarenal posterior wall of the abdominal aorta. Under the exercise conditions, these regions reduced significantly. The regions of low/oscillating wall shear stress on the lateral walls of iliac bifurcation persist under both conditions. These low/oscillating wall shear stress regions were consistent with the sites of vascular disease clinically.
CONTENTS
ABSTRACT IN CHINESE… i
ABSTRACT …ii
ACKNOWLEDGE IN CHINESE… iii
EXTENDED ABSTRACT IN CHINESE… iv
NOMENCLATURE …ix
CONTENTS…xi
LIST OF TABLES … xiii
LIST OF FIGURES … xiiii

CHAPTER
I. INTRODUCTION 1
1.1 Background 1
1.2 Literature review 3
1.3 Contributions of the Present Thesis10
1.4 Outline of the Thesis 10
II. METHODS AND PROCEDURES12
2.1 Governing Equations12
2.2 Basic relations of curvilinear coordinate system13
2.3 Governing equations in curvilinear coordinate system 16
2.4 Discretized Momentum Equations 17
2.5 Discretization momentum equations of covariant velocity components19
2.6 Covariant Velocity Based Calculation Procedure21
2.7 The First Pressure Correction Equation 23
2.8 The Second Pressure Correction Equation 24
2.9 The Calculation Procedure 26
2.10 Grid generation Procedure in branching flow 27
2.11 Zonal Grid technique 30
2.12 The Overall Solution Procedure 32
III. FLOW IN BRANCHING TUBES 33
3.1 T-tube flow 34
3.1 double-branched tube flow 35

IV. FLOW IN AN ABDOMINAL AORTA 42
4.1 Physical problems 42
4.2 Steady flows43
4.3 Pulsatile flows46
V. CONCLUDIND REMARKS 52
5.1 Results52
5.2 Limitations53
5.3 Suggestions for Future 55
REFERENCES 57
PUBLICATION LIST119
VITA120
REFERENCES

1.C. G. Caro, J. M. Fitz-Gerald, R. C. Schroter, “Atheroma and arterial wall shear observation, correlation, and proposal of a shear-dependent mass transfer mechanism for atherogenesis”, Proc. Roy. Soc., London, Series B, Vol. 177, pp. 109-159, 1971.
2.D. H. Bergel, R. M. Nerem and C. J. Schwarts, “Fluid Dynamic Aspects of Arterial Disease”, Atherosclerosis, Vol. 23, pp. 253-261, 1976.
3.C. J. Schwartz, A. J. Valente, E. A. Spraque, J. L. Kelley, and R. M. Nerem, “ The Pathogenesis of Atherosclerosis: An Overview.” Clinical Cardiology, Vol. 14, No. 1, pp. 1-16, 1991.
4.R. Ross, “Atherosclerosis: A Problem of Biology of Arterial Wall Cells and Their Interaction with Blood Components”, Atherosclerosis, Vol. 1, pp. 293-311, 1981.
5.T. Karino and H. L. Goldsmith, “ Particle Flow Behavior in Models of Branching Vessels. II. Effects of Branching Angle and Diameter Ratio on Flow Patterns” Biorheology, Vol. 22, pp. 87-104, 1985.
6.I. A. Feuerstein, O. A. El Masry and G. F. Round, “ Arterial Bifurcation Flows – Effects of Flow Rate and Area Ratio” Can. J. Physiol. Pharmacol., Vol. 54, pp. 795-807, 1976.
7.M. Siouffi, R. Pelissier, D. Faharifar and R. Rieu, “The Effects of Unsteadiness on the Flow through Stenoses and Bifurcations” J. Biomech., Vol. 17, pp. 299-315, 1984.
8.M. H. Friedman, O. J. Deters, F. F. Mark, C. B. Bargeron and G. M. Hutchins, “Arterial Geometry Affects Hemodynamics – Potential Risk Factor for Atherosclerosis” Atherosclerosis, Vol. 46, pp. 225-231, 1983.
9.D. N. Ku, S. Glagov, J. E. Moore and C. K. Zarins, “Flow Patterns in the Abdominal Aorta under Simulated Postprandial and Exercise Conditions: an Experimental Study” J. Vasc. Surg., Vol. 9, pp. 309-315, 1989.
10.M. H. Friedman, G. M. Hutchins, C. B. Bargeron, O. J. Deters, F. F. Mark, “Correlation between Intimal Thickness and Fluid Shear in Human Arteries” Atherosclerosis, Vol. 39, pp. 425-436, 1981.
11.J. R. A. Mitchell, C. J. Schwartz, Arterial Disease, Blackwell, Oxford, 1965
12.D. Lee and J. J. Chiu, “A Numerical Simulation of Intimal Thickening under Shear in Arteries”, Biorheology, Vol. 29, pp. 337-351, 1992.
13.D. Lee and J. J. Chiu, “Intimal Thickening Under Shear in A Carotid Bifurcation –A Numerical Study”, J. Biomech., Vol. 29, No. 1, pp. 1-11, 1996.
14.J. J. Chiu, “Computation of Three-Dimensional Branching Flows Using A Covariant Velocity Based Calculation Procedure and Zonal Grid Methods” Ph.D. Thesis. National Cheng Kung University, Taiwan, Roc., 1992.
15.M. Texon, “A Hemodynamic Concept of Atherosclerosis, with Particular Reference to Coronary Occlusion”, Arch. Of Int. Med., Vol. 99, pp. 418-427, 1957.
16.C. J. Schwartz and J. R. A. Mitchell, “Observation on localization of Arterial Plaques”, Circ. Res., Vol. 11, pp. 63-73, 1962.
17.D. L. Fry, “Certain Histological and Chemical Responses of the Vascular Interface to Acutely Induced Mechanical Stress in the Aorta of the Dog”, Cir. Res., Vol. 24, pp. 93-108, 1969.
18.C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov, “Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress”, Circ. Res., Vol. 53, pp. 502-514, 1983.
19.D. N. Ku, S. Glagov, J. E. Moore, and C. K. Zarins, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation. Positive Correlation between Plaque Location and Low Oscillating Shear Stress” Arteriosclerosis, Vol. 5, pp. 293-302, 1985.
20.R. L. Satcher, S. R. Bussolari, M. A. Gimbrone and C. F. Dewey, “The Distribution of Fluid Forces on Model Arterial Endothelium Using Computational Fluid Dynamics”, J. Biomech. Eng. Vol. 114, pp. 309-316, 1992.
21.N. DePaola, M. A. Gimbrone, P. F. Davies and C. F. Dewey, ”Vascular Endothelium Response to Fluid Shear Stress Gradients” Arterioscler. Thromb., Vol. 12, no. 11, pp. 1254-1257, 1992.
22.R. M. Nerem, “Hemodynamics and the Vascular Endothelium”, J. Biomech. Eng., Vol. 115, pp.510-514, 1993.
23.C. F. Dewey, S. R. Bussolari, M. A. Gimbrone and P. F. Davies, “The Dynamic Response of Vascular Endothelial Cells to Fluid Shear Stress” J. Biomech. Eng., Vol. 103, pp.177-181, 1981.
24.M. J. Levesque and R. M. Nerem, “The Elongation and Orientation of Cultured Endothelial Cells in Response to Shear Stress”, J. Biomech. Eng., Vol. 107, pp.341-347, 1985.
25.M. Sato, M. J. Levesque and R. M. Nerem, “Micropipette Aspiration of Cultured Bovine Aortic Endothelial Cells Exposed to Shear Stress”, Arteriosclerosis, Vol. 7, pp.276-286, 1987.
26.J. Levesque, E. A. Spraque and R. M. Nerem, “Vascular endothelial Cell Proliferation in Culture and the Influence of Flow “, Biomaterials, Vol. 11, pp.702-707, 1990.
27.J. Ando, H. Nomura and A. Kamiya, “The Effects of Fluid Shear Stress on the Migration and Proliferation of Cultured Endothelial Cells ”, Microvasc. Res., Vol. 33, pp.62-70, 1987.
28.E. F. Grabowski, E. A. Jaffe and B. B. Weksler, “Prostacyclin Production by Cultured Human Endothelial Cells Exposed to Step Increases in Shear Stress”, J. Lab. Clin. Med., Vol. 105, pp.36-43, 1985.
29.S. L. Diamond, J. B. Sharefkin, C. Dieffenbach, K. Frazier-Scott, L. V. McIntire and S. G. Eskin, “Tissue Plasminogen Activator Messenger RNA Levels Increase in Cultured Human Endothelial Cells Exposed to Laminar Shear Stress”, J. Cell Physiol., Vol. 143, pp.364-371, 1990.
30.E. A. Spraque, B. L. Steinbach, R.. M. Nerem and C. J. Schwartz, “Influence of Laminar Steady-State Fluid-Imposed Wall Shear Stress on the Binding, Internalization, and Degradation of Low Density Lipoproteins by Cultured Arterial Endothelium “, Circulation, Vol. 76, pp.648-656, 1987
31.A. R. S. Prasad, S. A. Logan, R.. M. Nerem, C. J. Schwartz and E. A. Spraque, “Flow-Related Responses of Intracellular Inosital Phosphate Levels in Cultured Aortic Endothelial Cells“, Circ. Res., Vol. 72, no. 4, pp.827-836, 1993.
32.R. V. Geiger, B. C. Berk, R. W. Alexander and R.. M. Nerem, “Flow-Related Calcium Transients on Single Endothelial Cells: Spatial and Temporal Analysis“, Am. J. Physiol.: Cell Physiol., Vol. 262, pp.C1411-C1417, 1992.
33.D. P. Giddens, C. K. Zarins, and S. Glagov, “The role of Fluid Mechanics in the Localization and detection of Atherosclerosis “, J. Biomech. Eng., Vol. 115, pp. 588-594, 1993.
34.J. D. Hartman, “ Structural Changes within the Media of Coronary Arteries Related to intimal thickening “ Am. J. Pathol., Vol. 89, pp. 13-34, 1977.
35.T. Kamiya and T. Togawa, “Adaptive Regulation of Wall Shear Stress to Flow and Change in the Canine Carotid Artery”, Am. J. Phys., Vol. 239, pp. H14-H21, 1980.
36.B. L. Languille and F. O’Donnell, “ Reductions in Arterial Diameter Produced by Chronic Decreases in Blood Flow are Endothelium-Dependent”, Science, Vol. 231, pp. 405-407, 1986.
37.C. K. Zarins, M. A. Zatina and D. P. Giddens, “ Shear Stress Regulations of Artery Lumen Diameter in Experimental Atherogenesis”, J. Vasc. Surg., Vol. 5, pp. 413-420, 1987.
38.M. H. Friedman, O.J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark, “ Shear-Dependent Thickening of the Human Arterial Intima”, Atherosclerosis, Vol. 60, pp. 161-171, 1986.
39.M. H. Friedman, and O.J. Deters, “Correlation among Shear Rate Measures in Vascular Flows”, ASME J. Biomech. Eng., Vol. 109, pp. 25-26, 1987.
40.R. J. Lutz, J. N. Cannon, k. B. Bischoff, R. L. Dedrick, R. K. Stiles and D L. Fry, ” wall Shear Stress Distribution in a Model Canine Artery during Steady Flow” Cirs. Res., Vol. 41, no. 3, pp.391-399, 1977.
41.R. J. Lutz, L. Hsu, A. Menawat, J. Zrubek and K. Edwards, “Comparison of Steady and Pulsatile Flow in a Double Branching Arterial Model”, J. Biomech., Vol. 16, no. 9, pp.753-766,1983.
42.T. Karino, M. Motomiya and H. L. Goldsmith, “Flow Patterns at the Major T-Junctions of the Dog Descending Aorta”, J. Biomech., Vol. 23, pp. 537-548, 1990.
43.A. I. Barakat, T. Karino and C. K. Colton, ”Microcinematographic Studies of Flow Patterns in the Excised Rabbit Aorta and its Major Branches” Biorheology, Vol. 34, no. 3, pp. 195-221, 1997.
44.D. Liepsch, A. Poll, J. Strigberger, H. N. Sabbah, P. D. Stein, “Flow Visualization Studies in a Mold of the Normal Human Aorta and Renal Arteries” J. Biomech. Eng., Vol. 111,pp. 222-227, 1989.
45.E. R. Pedersen, A. P. Yoganathan and X. P. Lefebvre, “Pulsatile Flow Visualization in a Model of the Human Abdominal Aorta and Aortic Bifurcation” J. Biomech., Vol. 25, No. 8, pp. 935-944,1992.
46.E. R. Pedersen, H. W. Sung, A. C. Burlson and A. P. Yoganathan, “Two-dimensional Velocity Measurements in a Pulsatile Flow Model of the Normal Abdominal Aorta Simulating Different Hemodynamic Conditions” J. Biomech., Vol. 26, No. 10, pp. 1237-1247,1993.
47.E. R. Pedersen, H. W. Sung and A. P. Yoganathan, “Influence of Abdominal Aortic Curvature and Resting Versus Exercise Conditions on Velocity Fields in the Normal Abdominal Aortic Bifurcation” ASME J. Biomech. Eng., Vol. 116, pp. 347-354,1994.
48.D. N. Ku, S. Glagov, J. E. Jr. Moore and C. K. Zarins “Flow Patterns in the Abdominal Aorta Under Postprandial and Exercise Conditions: An Experimental Study” J. Vasc. Surg., Vol. 9, No. 2, pp. 309-316,1989.
49.J. E. Jr. Moore, D. N. Ku, C. K. Zarins and S. Glagov, “Pulsatile Flow Visualization in the Abdominal Aortic Under Differing Physiologic Conditions: Implications for Increased Susceptibility to Atherosclerosis” J. Biomech. Eng., Vol. 114, pp. 391-397,1992
50.J. E. Jr. Moore and D. N. Ku, “Pulsatile Velocity measurements in a Model of the Human Abdominal Aorta Under Simulated Exercise and Postprandial Conditions” J. Biomech. Eng., Vol. 116, pp. 107-111,1994
51.J. E. Jr. Moore and D. N. Ku, “Pulsatile Velocity measurements in a Model of the Human Abdominal Aorta Under Resting Conditions” J. Biomech. Eng., Vol. 116, pp. 337-346,1994
52.V. V. Gokhale, R. I. Tanner and K. B. Bischoff, “Finite Element solution of the Navier-Stokes Equations for Two-Dimensional Steady Flow Through a Section of a Canine Aorta Model”, J. Biomech., Vol. 11, pp.241-249, 1978.
53.T. Shipkowitz, V. G. J. Rodgers, L. J. Frazin and K. B. Chandran, “Numerical Study on the Effect of Steady Axial Flow Development in the Human Aorta on Local Shear Stresses in Abdominal Aortic Branches”, J. Biomech., Vol. 31, pp. 995-1007, 1998.
54.T. Shipkowitz, V. G. J. Rodgers, L. J. Frazin and K. B. Chandran, “Numerical Study on the Effect of Secondary Flow in the Human Aorta on Local Shear Stresses in Abdominal Aortic Branches”, J. Biomech., Vol. 33, pp. 717-728, 2000.
55.C. A. Taylor, T. J. R. Hughes and C. K. Zarins, “Finite Element Modeling of Three-Dimensional Pulsatile Flow in the Abdominal Aorta: Relevance to Atherosclerosis”, Annals of Biomedical Eng., Vol. 26, pp. 975-987, 1998.
56.C. A. Taylor, T. J. R. Hughes and C. K. Zarins, “Effect of Exercise on Hemodynamic Conditions in the Abdominal Aorta”, J. Vasc. Surg., Vol. 29, No. 6, pp. 1077-1089, 1999.
57.D. Lee and J. J. Chiu, “Computation of Physiological Bifurcation Flow Using a Patched Grid”, Computers and Fluids, Vol. 21, pp. 519-535. 1992.
58.D. Lee and J. J. Chiu, “Covariant Velocity Based Calculation Procedure with Nonstaggered Grid for Computation of Pulsatile Flows”, Numerical Heat Transfer B, Vol. 21, pp. 269-286, 1992.
59.S. V. Patankar, “Numerical Heat Transfer and Fluid Flow”, Hemisphere, Washington, DC, 1980.
60.R. Aris, “Vectors, Tensor and the Basic Equations of Fluid Mechanics”, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962.
61.K. C. Karki, “A Calculation Procedure for Viscous Flows at All Speeds in Complex Geometries”, Ph.D. Thesis, University of Minnesota, 1986.
62.J. J. Chiu, “Computation of Three-Dimensional Branching Flows Using a Covariant Velocity Based Calculation Procedure and Zonal Grid Methods” Ph.D. Thesis, National Cheng Kung University, Tainan, Taiwan, 1992.
63.C. M. Rhie and W. L. Chow, “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation”, AIAA J., Vol. 21, No. 11, 1983.
64.S. Majumdar, “Role of Underrelaxation in Momentum Interpolation for Calculation of Flow with Nonstaggered Grids” Numer. Heat Transfer, Vol. 13, pp. 125-132, 1988.
65.D. Lee and Y. M. Tsuei, “LT-GRID”, National Science Council Project Report, CS75-0210-0006-04, Taipei, Taiwan, R.O.C., 1987.
66.J. F. Thompson, F. C. Thames and C. W. Mastin, “TOMCAT – A Code for Numerical Generation of Boundary-Fitted Curvilinear Coordinate System on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies”, J. Comput. Phys., Vol. 24, pp. 274-302, 1977.
67.R. L. Sorenson, “ A Computer Progrgam to Generate Two-Dimensional Grids About Airfoils and Other Shapes by the Use of Poisson’s Equation”, NASA-TM-81198, 1980.
68.A. Pollard, “Flow in T Junctions”, Ph.D. Thesis, University of London, London, 1978.
69.K. Perktold and R. Peter, “Numerical 3D-Simulation of Pulsatile Wall Shear Stress in an Arterial T-Bifurcation Model”, J. Biomed. Eng., Vol. 12, pp. 2-12, 1990.
70.K. Perktold, R.Peter and M. Resch, “Pulsatile Non-Newtonian Blood Flow Simulation through a Bifurcation with an Aneurysm” Biorheology, Vol. 26, pp.1011-1030, 1989.
71.D. Liepsch, S. Moravec, A. K. Rastogi and N. S. Vlachos, “Measurement and Calculation of Laminar Flow in a Ninety Degree Bifurcation” J. Biomech., Vol. 15, pp.473-485, 1982.
72.M. A. Leschziner and K. P. Dimitriadis, “Computation of Three-Dimensional Turbulent Flow in Non-Orthogonal Junctions by a Branch-Coupling Method” Computers and Fluids, Vol. 17, pp.371-396.1989
73.C. C. M. Rindt, A. A. Van Steenhoven, J. D. Janssen, R. S. Reneman and A. Segal, “A Numerical Analysis of Steady Flow in a Three-Dimensional Model of the Carotid Artery Bifurcation” J. Biomech., Vol. 23, pp.461-473.1990.
74.G. H. Mostbeck, M. C. Dulce, G. R. Caputo, E. Proctor and C. B. Higgins, “Flow Pattern Analysis in the Abdominal Aorta with Velocity-Encoded Cine MR Imaging”, J. Magn. Reson. Imaging. Vol. 3, pp.617-623, 1993.
75.X. He and D. N. Ku, “Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions”, J. Biomech. Eng., Vol. 118, pp.74-82, 1996.
76.J. F. Cornhill, E. E. Herderick and H. C. Stary, “Topoghaphy of Human Aortic Sudanophilic Lesions”, Monogr. Atheroscler., Vol. 15, pp. 13-19, 1990.
77.D. D. Duncan, C. B. Bargeron, S. E. Borchardt, O. J. Deters, S. A. Gearhart, F. F. Mark and M. H. Friedman, “The Effect of Compliance on Wall Shear in Casts of a Human Aortic Bifurcation”, J. Biomech. Eng., Vol. 112, pp. 183-188, 1990.
78.K. Perktold and G. Rappitsch, “Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model”, J. Biomech., Vol. 28, pp. 845-856, 1995.
79.D. A. Steinman and C. R. Ethier, “ The Effect of Wall Distensibility on Flow in a Two-Dimensional End-to-Side Anastomosis”, J. Biomech. Eng., Vol. 116, pp. 294-301, 1994.
80.K. Perktold, R. O. Peter, M. Resch and G. Langs, “Pulsatile Non-Newtonian Flow in Three-Dimensional Carotid Bifurcation Models: A Numerical Study of Flow Phenomena under different bifurcation Angles”, J. Biomech. Eng., Vol. 13, pp. 507-515, 1991.
81.L. W. Ehrlich and M. H. Friedman, “Computational Aspects of Aortic Bifurcation Flows”, Comput. & Fluids, Vol. 13, pp. 177-183, 1985.
82.V. O’Brien, L. W. Ehrlich and M. H. Friedman, “Unsteady Flow in a Branch”, J. Fluid Mech., Vol. 75, pp. 315-336, 1976.
83.C. N. Yung, T. G. Keith and K. J. de Witt, “Numerical Simulation of Axisymmetric Turbulent Flow in Combustors and Diffusers”, Int. J. Numer. Meth. In Fluids., Vol. 9, pp. 1675-183, 1989.
84.M. Siouffi, R. Pelissier, D. Farahifar and R. Rieu, “The Effect of Unsteadiness on the Flow through Stenosis and Bifurcations”, J. Biomech., Vol. 17, pp. 299-315, 1984.
85.T. Fukushima, T. Homma, T. Azuma and K. Harakaw, “Characteristics of Secondary Flow in Steady and Pulsatile Flows through a Symmetrical Bifurcation”, Biorheology, Vol. 24, pp.3-12, 1987.
86.R. E. Hayes, K. Nandakumar and H. Nasr-El-Din, “Steady Laminar Flow in a 90 Degree Planar Branch”, Comput. & Fluids, Vol. 17, No. 4, pp. 537-553, 1989.
87.L. Fuchs, “Numerical Computation of Viscous Incompressible Flows in Systems of Channels”, AIAA Paper 87-0367, 1987.
88.J. M. Khodadadi, N. S. Vlachos, D. Liepsch and S. Moravec, “LDA Measurements an Numerical Prediction of Pulsatile Laminar Flow in a Plane 90-Degree Bifurcation”, J. Biomech. Eng., Vol. 110, pp. 129-136, 1988.
89.M. Kawaguti and A. Hamano, “Numerical Study of Bifurcation Flow of a Viscous Fluid: II. Pulsatile Flow”, J. Phys. Soc. Japan, Vol. 49, pp. 817-824, 1980.
90.T. Karino, H. H. M. Kwong and H. L. Goldsmith, “ Particle Flow in Models of Branching Vessels. I. Vortices in 90 Degree T-Junction” Biorheology, Vol. 16, pp. 231-248, 1979.
91.S. Moravec and D. Liepsch, “Flow Investigation in a Model of a Three Dimensional Human Artery with Newtonian and Non-Newtonian Fluids: Part 1” Biorheology, Vol. 20, pp. 745, 1983.
92.D. Liepsch and S. Moravec, “Pulsatile Flow of Non-Newtonian Fluids in Distensible Models of Human Arteries” Biorheology, Vol. 21, pp. 571, 1984.
93.B. K. Bharadvaj, R. F. Mabon and D. P. Giddens, “Human Carotid Bifurcation. Part 1 – Flow Visualization, Part 2 – Laser-Doppler Anemometer Measurements”, J. Biomech., Vol. 15, pp. 349-378, 1982.
94.C. C. M. Rindt, F. N. Van de Vosse, A. A. Van Steenhoven, J. D. Janssen, R. S. and Reneman, “A Numerical and Experimental Analysis of the Flow Field in a Two-Dimensional Model of the Human Carotid Artery Bifurcation” J. Biomech., Vol. 20, pp.499-509.1987.
95.K. Perktold and D. Hilbert, “Numerical Simulation of Pulsatile Flow in a Carotid Bifurcation Model”, J. Biomed. Eng., Vol. 8, pp. 193-199, 1986.
96.C. C. M. Rindt, A. A. Van Steenhoven and R. S. Reneman “An Experimental Analysis of the Flow Field in a Three-Dimensional Model of the Carotid Artery Bifurcation” J. Biomech., Vol. 21, pp.985-991.1988.
97.K. Perktold, H. Florian and D. Hilbert, “Analysis of Pulsatile Blood Flow: a Carotid Siphon Model”, J. Biomed. Eng., Vol. 9, pp. 46-53, 1987.
98.K. Perktold and M. Resch, “Numerical Flow Studies in Human Carotid Artery Bifurcations: Basic Discussion of the Geometric Factor in Atherogenesis”, J. Biomed. Eng., Vol. 12, pp. 111-123, 1990.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 19.張文毅,民87,<美國證券承銷制度簡介(三)>,證券櫃檯,第三十期,11-15頁
2. 18.張文毅,民87,<美國證券承銷制度簡介(二)>,證券櫃檯,第二十九期,25-38頁
3. 17.張文毅,民87,<美國證券承銷制度簡介(一)>,證券櫃檯,第二十八期,12-30頁
4. 24.黃惠雯,民89,<部分確定包銷制度>,證券暨期貨管理,第十八卷第一期,15-18頁
5. 22.張振山,民87,<有價證券新公開申購配售制度>,證券暨期貨管理,第十六卷第二期,24-32頁
6. 21.張文毅,民88,<美國證券承銷制度簡介(五)>,證券櫃檯,第三十二期,29-39頁
7. 20.張文毅,民88,<美國證券承銷制度簡介(四)>,證券櫃檯,第三十一期,31-42頁
8. 14.林象山、許清華,民86,<新上市股承銷方式的選擇>,中國財務學刊,第三卷第一期,119-143頁
9. 10.李俊德、邱文昌,民84,<簡介我國有價證券承銷制度之變革>,證券管理,第十三卷第十二期,37-45頁
10. 8.李俊德,民84,<承銷制度興利除弊-談我國承銷制度改進方案>,實用稅務,244期,72-76頁
11. 13.林象山,民84,<承銷商安定操作對新上市股票之影響>,管理科學學報,第十二卷第二期,247-266頁
12. 6.李建然、林子瑄,民90,<現金增資採用詢價圈購方式對外部股東財富之影響>,當代會計,第二卷第二期,127-146頁