跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志宏
研究生(外文):Chih-Hung Lin
論文名稱:恐懼記憶形成與消除的細胞機轉之探討
論文名稱(外文):Cellular mechanisms of formation and extinction of fear memory
指導教授:簡伯武簡伯武引用關係
指導教授(外文):Po-Wu Gean
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:144
中文關鍵詞:晚期長期增益現象鈣依賴型去磷酸酶杏仁核恐懼驚嚇模式磷酯激酶
外文關鍵詞:L-LTPcalcineurinPI3-kinaseamygdalafear conditioning
相關次數:
  • 被引用被引用:1
  • 點閱點閱:873
  • 評分評分:
  • 下載下載:180
  • 收藏至我的研究室書目清單書目收藏:1
學習與記憶為生物體生存的必要能力,亦為生物體發展的動力;然而,對於事物的過度認知,往往會造成負面的結果。焦慮症狀的產生,實為生物體對於恐懼經驗的過度學習與記憶所導致,並且焦慮的精神疾病更是目前人類所處環境的一大危害及負擔,因此,改善並消除焦慮精神疾患,實為目前神經科學研究的主要目標之一。然而,要消除焦慮症狀,除了改善生物體所處外在環境及調整生物體的生活心態以外,對於生物體腦神經細胞的直接調控,更是解決恐懼、焦慮問題的主要策略,因此,恐懼記憶形成及消除恐懼記憶機制的探討,實為解決焦慮症狀最直接及明顯的途徑。

  過去許多實驗證據顯示,大腦杏仁核體區域對於恐懼記憶的表現及誘發扮演著重要角色,而基本上恐懼記憶的形成過程杏仁核神經細胞是處於興奮狀態,而神經細胞中的鈣離子通道對於神經細胞處於興奮狀態與否或對生物體恐懼記憶之調控著實扮演重要角色;並且神經細胞中鈣離子濃度亦調控著細胞內訊息傳遞因子的活化種類。而為了達到抗焦慮藥物之開發目的,則影響杏仁核神經細胞進而調控恐懼記憶之所有相關因子,都為本計劃探討的目標。

  5-羥基色胺酸這種腦神經傳遞物質,以各種不同亞型的形式普遍存在於各個腦區域如杏仁核、海馬迴、小腦、視丘……等等,且臨床上buspirone這種良好的抗痙劑亦為一種5-羥基色胺1A亞型接受器制劑;然而過去許多實驗證據顯示,5-羥基色胺酸在離體的杏仁核神經細胞中,可以透過5-羥基色胺酸1A亞型接受器對腦神經細胞的興奮性突觸電位產生抑制現象,另外在活體的動物實驗中,顱內注射5-羥基色胺酸於恐懼老鼠的杏仁核體區域,則可以抑制老鼠的恐懼程度。因此,首先進行5-羥基色胺酸這種神經傳遞物質與杏仁核神經細胞的鈣離子流之間關係探討?利用電生理全細胞記錄法配合藥理學技術之運用來進行實驗,由實驗結果發現,5-羥基色胺酸可以透過5-羥基色胺酸1A亞型接受器對杏仁核神經細胞的高電位依賴型鈣離子通道產生抑制性影響。且是經由抑制P/Q型及N型的鈣離子通道進而抑制細胞外鈣離子的內流,另外也發現,R型鈣離子通道也有部位參與在其中。另外,從實驗中也發現,5-羥基色胺酸是經由所謂的G-protein-mediated signaling pathway對鈣離子通道產生抑制作用。

  而由於過去實驗證據顯示,Isoproterenol這種乙型腎上腺皮質素作用劑可以促進杏仁核神經細胞的鈣離子內流現象,因此接下來想要探討5-羥基色胺酸與乙型腎上腺皮質素接受器途徑的交互作用情形?從實驗結果發現,5-羥基色胺酸對鈣離子流的抑制作用強於乙型腎上腺皮質素系統對鈣離子流的強化作用。
  接著直接利用產生驚嚇的動物模式,去探討與恐懼或消除恐懼相關的因子,而PI3-Kinase這種細胞內蛋白活化激脢在過去研究中,主要是扮演對於細胞生成及細胞分裂過程的調控,是一種防止細胞凋亡的重要因子,然而,近年來對於PI3-Kinase在腦神經細胞功能方面的研究,似乎有嶄露一絲曙光,但真正扮演的角色仍是模糊,例如過去有學者發現PI3-Kinase在大腦海馬迴的dentate gyrus區域所產生的長期突觸傳導增益現象中,扮演一正向調控角色,然而另有學者發現,在PI3-Kinase剔除的小白鼠中,其海馬迴CAI區域所產生的長期突觸傳遞增益現象有增強的情形,但其空間記憶卻沒有任何改變。本實驗要針對PI3-Kinase這種細胞內蛋白活化激脢在恐懼老鼠的杏仁核細胞中所扮演的角色進行探討,主要運用西方點墨法及藥理學技術進行實驗,實驗結果發現,PI3-Kinase的活性會隨著老鼠的恐懼產生而有增加的情形,此一發現,使得MAPK於恐懼老鼠所扮演的角色以外,又添增一新參與於恐懼老鼠的蛋白脢;另外發現PI3-Kinase與MAPK之間有交互作用且PI3-Kinase的作用點是位於MAPK的上游;為了加強實驗證據,亦利用免疫組織化學法進行實驗,也發現恐懼老鼠的PI3-Kinase活性確實有明顯增加。另外也利用電生理細胞外記錄法對PI3-Kinase在L-LTP所扮演的角色進行探討,結果顯示與在活體實驗中有平行一致的現象(活體實驗證明PI3-Kinase只與長期恐懼記憶有關),即PI3-Kinase可抑制L-LTP的形成。在免疫組織化學法對CREB進行的實驗方面,結果顯示CREB活性有明顯增加,表示此種長期恐懼記憶形成需有新蛋白質合成的參與;從本實驗可以初步清楚確定PI3-Kinase於腦神經細胞功能中所扮演的角色。

  接著探討PI3-Kinase是否也在恐懼消除的老鼠中扮演一重要角色?老鼠經由消除恐懼的訓練後,則其杏仁核神經細胞內的PI3-Kinase相對於恐懼老鼠有明顯下降情形,且在消除恐懼老鼠中calcineurin的活性及蛋白質表現量都有明顯璔加,從此結果,更衍生發現calcineurin這種鈣離子依賴型去磷酸脢在PI3-Kinase的去活化扮演一重要角色。

從以上實驗結果發現,5-羥基色胺酸對杏仁核神經細胞鈣離子流產生抑制作用,且PI3-Kinase在恐懼記憶形成及消除恐懼記憶的訊息傳遞路徑上扮演重要角色,且發現calcineurin為一消除恐懼記憶的重要因子,而這些機轉的發現,實為對於未來抗焦慮藥物的開發產生莫大契機 。
Learning and memory is the basis for the survival and development of creatures, however, aversive experience of fear is subject to anxiety. Therefore, The problems of anxiety can be solved by an understanding of emotional fear in terms of its underlying cellular and molecular mechanisms.

Accumulated evidence indicates that the amygdala is a crucial neuronal locus for the induction and expression of fear memory. And amygdaloid neurons are in excitatory states in fear conditioing rats. On the other hand, Ca2+ channels play an important role in excitatory neurons and the concentration of intracellular Ca2+ regulates the activation state of signalling factors.Therefore, all the modulatory factors which are involved in fear conditioning mechanisms will be investigated in this project. Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter in the mammalian peripheral and central nervous system. And buspirone used in clinic treatment is also a 5-HT1A receptor partial agonist. Previous studies showed that 5-HT could inhibit the fEPSP via the 5-HT1A receptors in the amygdaloid neurons, and the fear conditioning rats could be released after intraventricular infusion of 5-HT into the amygdala locus. Thus, the modulation of voltage-dependent calcium currents (Ica) by 5-HT hereby will be studied and rat acutely dissociated amygdala neurons will be investigated by using whole-cell patch-clamp recording techniques. The results show that 5-HT inhibits Ica in a concentration-dependent manner with a ED50 of ~ 1mM and a maximal inhibition of ~ 50%.And we found thatThe inhibition is mediated by 5-HT1A receptors. Pretreatment of neurons with the alkylating agent NEM or pertussis toxin markedly reduce the action of 5-HT. The modulation is partially reversed by strong depolarization and is not seen in cell-attached patches when the agonist is applied outside the recorded patch, suggesting a membrane-delimited G-protein-mediated signaling pathway. And the results show that P/Q-type and N-type VDCCs are mainly involved in the action of inhibition by 5-HT.
Stimulation of b-adrenergic receptor with isoproternol or activation of adenylyl cyclase with forskolin results in an enhancement of Ica.However, these results provide the first evidence showing a dominant effect of 5-HT-mediated inhibition over Iso-mediated enhancement of Ica.

Continuously, the intracellular signaling pathway will be studied further. Recently, it has been suggested that the changes of synaptic transmission in the LA are initiated by an influx of Ca++ into cells through NMDA receptors or L-type Ca++ channels, leading to the activation of protein kinases.However,PI3- kinase is one of the intracellular protein kinases that catalyzes the transfer of r-phosphate of ATP to the D-3 hydroxyl group of the inositol head group of phosphoinositides and also been suggested to participate in nerve growth factor (NGF) - and glial cell line-derived neurotropic factors (GDNFs) – mediated survival of sympathetic and spinal cord motoneurons. Although a recent study implied that PI3- kinase may play a role in the expression of LTP in hippocampal dentate gyrus, data conflicted as it was found that PI3- kinase -deficient mice displayed an enhanced hippocampal CAI LTP but with normal spatial memory. Therefore , fear conditioning rats will be used for identifying the role of PI3- kinase in fear memory formation.

Western blotting and extracellular recordings are applied with pharmacological techniques in the experiments. And the results show that PI-3 kinase is selectively activated in the amygdala following fear conditioning and pharmacological blockade of PI3-kinase impairs fear memory in a dose-dependent manner. In in vitro slice preparation, it shows that bath application of PI-3 kinase inhibitors attenuate tetanus-induced L-LTP in the amygdala. Therefore, a novel role of PI-3 kinase in fear conditioning and synaptic plasticity has been revealed here and the results also show that PI-3 kinase contributes to L-LTP and fear memory likely via the activation of MAPK and CREB. And additional immunohistochemical evidence also prove the role of PI-3 kinase in fear conditioning.

Fear extinction mechanism is important as well as fear conditioning mechanism .However, previous studies show that PI-3 kinase is an important role in the acquistion of fear, whether it also plays an essential role in fear extinction will be investigated further?As we know, animals that contact a cue (conditioned stimulus, CS), when repeatedly paired with a noxious stimulus (unconditioned stimulus, US), induce a fear response. However, after initial training, if the animals are exposed only to the cus (CS) without pairing with US, previously acquired response will gradually disappear. This reduction of conditioned response is known as fear extinction. However, the data show that the activation of PI-3 kinase is abated in fear-extinction rats, it shows that PI-3 kinase has been dephosphorylated. The result suggests that phosphatase seems involved in the event. Therefore, calcineurin, the common calcium-dependent neuronal phosphatase, will be investigated and the data show a significant increase in the expression of protein phosphatase calcineurin(including activities and protein expression). Another data show that bilateral infusion of calcineurin or protein synthesis inhibitors into the amygdala prevents the fear extinction. Thus, a signaling pathway played by calcineurin during extinction trials is important for the reversal or destabilization of original fear memory.

Taken together, all the results show that 5-HT can inhibit the Ca2+ currents by the regulation of N- and P/Q- type Ca2+ channels.And PI3-kinase plays an important role in the pathways of fear formation and fear extinction.On the other hand, calcineurin is also revealed as an important fear- supreesor factor. The findings of all the mechanisms are beneficial for pharmacological intervention of anxiety and posttraumatic stress disorders, on the other hand, they may provide some insight into the long-term memory formation in the brain.
目錄
(Contents)

中文摘要………………………………… Pg.04-08
英文摘要………………………………… Pg.09-12
縮寫檢索表……………………………… Pg.13-14
Chapter 1 緒論……………………………………… Pg.15-21
Chapter 2 Materials & Methods………………….. Pg.22-49
Chapter 3 血清素對老鼠杏仁核體
神經細胞中電位依賴型
鈣離子流的調控………………………… Pg.50-68
Chapter 4 PI3-Kinase signaling pathway
在恐懼老鼠的杏仁核神經
細胞及杏仁核神經細胞之間
突觸傳導可塑性的角色探討…………… Pg.69-95
Chapter 5 Calcineurin在老鼠恐懼記憶消除
機制中所扮演的角色的探討………….. Pg.96-116
Chapter 6 結論…………………………………… Pg.117-122
參考文獻……………………………… Pg.123-138
著作…………………………………… Pg.139-140
圖表索引……………………………… Pg.141-144
1.Albert, C., Mayr, G.W., Lee, C.-J. and Shin, H.-S. 1998. Enhanced hippocampal CA1 LTP but normal spatial learning in inositol 1,4,5-triphosphate 3-kinase(A)-deficient mice. Learning and Memory 5, 317-330.

2.Andrade R, Malenka RC, Nicoll RA. 1986. A G-protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261-1265.

3.Atkins, C.M., Selcher, J.C., Petraitis, J.J., Trzaskos, J.M. and Sweatt, J.D. 1998. The MAPK cascade is required for mammalian associative learning. Nature Neurosci. 7, 602-609.

4.Banke, T.G., Bowie, D., Lee, H.K., Huganir, R.L., Schousboe, A. & Traynelis, S.F. 2000.Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89-102.

5.Bayliss DA, Li Y-W, Talley EM. 1997. Effects of serotonin on caudal raphe neurons: inhibition of N- and P/Q-type calcium channels and the afterhyperpolarization. J Neurophysiol 77:1362-1374.

6.Bayliss DA, Umemiya M, Berger AJ. 1995. Inhibition of N- and P-type calcium currents and the afterhyperpolarization in rat motoneurones by serotonin. J Physiol 485.3:635-64.

7.Berman, D.E. & Dudai, Y. 2001. Memory extinction, learning anew, and learning the new: dissociation in the molecular machinery of learning in cortex. Science 291, 2417-2419.

8.Berman, D.E., Hazvi, S., Rosenblum, K., Seger, R. and Dudai, Y. .1998. Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat. J. Neurosci. 18, 10037-10044.

9.Bernabeu, R., Bevilaqua, L., Ardenghi, P, Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I. And Medina, J.H. 1997. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Aca. Sci. 94, 7041-7046.

10.Bliss, T.V.P. & Collingride, G.L. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361 : 31-39.

11.Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E.M. .1995. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403-1414.

12.Blum, S., Moore, A.N., Adams, F. and Dash P.K. .1999. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J. Neurosci. 19, 3535-3544.

13.Bobillier P, Seguin S, Petitjean F, Salver D, Touret M, Jouvet M. 1976. The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449-486.

14.Bouton, M.E. & Bolles, R.C.1979. Role of contextual stimuli in reinstatement of extinguished fear. J. Exp. Psychol.[ Anim. Behav.]5, 368-378.

15.Bouton, M.E. & King, D.A.1983. Contextual control of conditioned fear: tests for the associative value of the context.J.Exp.Psychol. [ Anim. Behav.]9, 248-256.

16.Brambilla, R., Gnesutta, N., Minichiella, L., White, G., Roylance, A.J., Herron, C. E., Ramsey, M., Wolfer, D.P., Cestari, V., Arnaud, C.R., Grant, S,G.N., Chapman, P.F., Lipp, H.-P, Sturani, E. and Klein, R. .1997. A role for the Ras signaling pathway in synaptic transmission and long-term memory. Nature 390, 281-286.

17.Campeau, S. and Davis, M. 1995. Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with auditory and visual conditioned stimuli. J. Neurosci. 15, 2312-2327.

18.Cassella, J.V. and Davis, M. 1986. The design and calibration of a startle measurement system. Physiol. Behav. 36, 377-383.

19.Chalmers DT, Watson SJ. 1991. Comparative anatomical distribution of 5-HT1A receptor and mRNA and 5-HT1A binding in rat brain – a combined in situ hybridization on vitro receptor autoradiographic study. Brain Res 561:51-60.

20.Cheng LL, Wang SJ, Gean PW. 1998. Serotonin depresses excitatory synaptic transmission and depolarization-evoked Ca++ influx in rat basolateral amygdala via 5-HT1A receptors. Eur J Neurosci 10:2163-2172.

21.Coogan, A.N., O’Leary, D.M. and O’Connor, J.J. .1999. P42/44 MAPK kinase inhibitor PD98059 attenuates multiple forms of synaptic plasticity in rat dentate gyrus in vitro. J. Neurophysiol. 81, 103-110.

22.Corcoran, K.A. & Maren, S.2001.Hippocampal inactivation disrupts contextual retrival of fear memory after extinction. J.Neurosci. 21, 1720-1726.

23.Crowder, R.J. and Freeman, R.S. 1998. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci. 18, 2933-2943.

24.David M. 1994. The role of the amygdala in emotional learning. Int Rev Neurobiol 36:225-266.

25.Davis, H.P. and Squire, L.R. 1984. Protein synthesis and memory: a review. Psychol. Bull. 96, 518-559.

26.Davis, M. 2000.The role of the amygdala in conditioned and unconditioned fear and anxiety. in: The Amygdala: A Functional Analysis. (ed. Aggleton, J.P.) 213-287 (Oxford University Press Inc., New York.).

27.Davis, M., Falls, W.A., Campeau, S. and Kim, M. 1993. Fear-potentiated startle: a neural and pharmacological analysis. Beh. Brain Res. 58,175-198.

28.Davis, M., Rainnie, D. and Cassell, M. 1994. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 17,208-214.

29.Dolphin AC. 1998. Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J Physiol 506.1:3-11.

30.Dudek, H., Datta, S.R., Franke, T.F., Bimbaum, M.J., Yao, M., Cooper, G.M., Segal, R.A., Kaplan, D.R. and Greenberg, M.E. 1997.Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275,661-665.

31.English, J.D. and Sweatt, J.D. 1996. Activation of p42 mitogen-activated protein kinase in hippocampal long-term potentiation. J. Biol. Chem. 271, 24329-24332.

32.English, J.D. and Sweatt, J.D. 1997. A requirement for the mitogen-activated protein kinase cascade in hippocampal long-term potentiation. J. Biol. Chem. 272,

33.Falls, W.A., Miserendino, J.D. & Davis, M. 1992. Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci. 12,854-863.

34.Fendt, M. and Fanselow, M.S. 1999. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Behav. Rev. 23,743-760.

35.Fernandes C, Andrews N, File SE. 1994. Diazepam withdrawal increases [3H]-5-HT release from rat amygdaloid slices. Pharmacol. Biochem Behav 49:259-362.

36.Finkbeiner S, Greenberg ME. 1996. Ca++-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron 16:233-236.

37.Filippa, N., Sable, C.L., Filloux, C., Hemmings, B. and Van Obberghen, E. 1999. Mechanism of protein kinase B activation by cyclic AMP-dependent protein kinase. Mol. Cell. Biol. 19,4989-5000.

38.Foehring RC. 1996. Serotonin modulateds N- and P-type calcium currents in neocortical pyramidal neurons via a membrane-delimited pathway. J Neurophysiol 75:648-658.

39.Foehring RC, Scroggs RS. 1994. Multiple high-threshold calcium currents in acutely isolated rat amygdaloid pyramidal cells. J Neurophysiol 71:433-436.

40.Frey, U., Huang, Y.Y. and Kandel, E.R. 1993. Effect of cAMP simulateds a late stage of LTP in hippocampal CA1 neurons. Science 260,1661-1664.

41.Fruman, D.A., Klee, C.B., Bierer, B.E. & Burakoff, S.J. 1992. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK506 and cycolsporin A. Proc. Natl. Aca. Sci. USA 89, 3686-3690.

42.Fuller, R.W. 1996 .Mechanisms of functions of serotonin neuronal systems:opportunities for neuropeptide interaction. ANNNY Acad Sci.780: 176-184.

43.Gray R, Johnston D. 1987. Noradrenaline and β-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Nature 327:620-622.

44.Hall, J., Thomas, K.L. & Everitt, B.J. 2001. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur. J. Neurosci. 13,1453-1458.

45.Hardingham G, Chawla S, Johnson C, Bading H. 1997. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385:260-265.

46.Hawes, B.E., Luttrell, L.M., van Biesen, T. and Lefknowitz, R.J. 1996.Phosphatidylinositol 3-kinase is an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271,12133-12136.

47.Hille B. 1994. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531-536.

48.Huang CC, Hsu KS, Gean PW. 1996. Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala. J Neurosci 16:1026-1033.

49.Huang CC, Wang SJ, Gean PW. 1998. Selective enhancement of P-type calcium currents by isoproterenol in the rat amygdala. J Neurosci 18:2276-2282.

50.Huang, Y.-Y. and Kandel, E.R. 1998. Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21,169-178.

51.Huang, Y.-Y, Martin, K.C. and Kandel, E.R. 2000. Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J. Neurosci. 20,6317-6325.

52.Impey, S. et al. 1998.Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1,595-601.

53.Impey, S., Obrietan, K., Wong, S.T., Poser, S., Yano, S., Wayman, G., Deloulme, J.C., Chan, G and Storm, D.R. 1998. Cross talk between ERK and PKA is required for Ca++ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21,869-883.

54.Impey, S., Smith, D.M., Obrietan, K., Donahue, R., Wade, C., and Storm, D.R. 1998. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat. Neurosci. 1,595-601.

55.Jacobs, B.L. & Azmitia, E.C. 1992 .Structure and function of the brain serotonin system. Physiol. Rev. 72: 165-229

56.Jakobs KH, Lasch P, Minuth M, Aktories K, Schultz G. 1982. Uncoupling of α-adrenoceptor-mediated inhibition of human platelet adenylyl cyclase by N-ethylmaleimide. J Biol Chem 257:2829-2833.

57.Jones, M.V. & Westbrook, G.L. Shaping of IPSCs by endogenous calcineurin activity. J. Neurosci. 17,7626-7633.

58.Josselyn, S.A. et al. 2001.Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci. 21,2404-2412.

59.Jun, K.,Choi, G., Yang, S.-G.,Choi, K.Y., Kim, H., Chan, G.C.K., Storm, D.R.,Albert, Mayr, G.W.,Lee, C.-J. and Shin, H.-S. 1998.Enhanced hippocampal CA1 LTP but normal apatial learning in inositol 1,4,5-triphosphate 3-kinase( A )-deficient mice. Learning and Memory 5, 317-330.

60.Kandel, E.S. and Hay, N. (1999) The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell Res. 253,210-229

61.Kanterewicz, B.I., Urban N.N., McMahon, D.B.T., Norman, E.D., Giffen, L.J., Favata, M.F., Scherie, P.A., Traskos, J.M., Barrionuevo, G. and Klann, E. (2000) The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J. Neurosci. 20,3057-3066.

62.Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M. 1993. Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assessed by in vivo microdialysis. Neurosci Lett 162:81-84.

63.Kelly, A. and Lynch, M.A. (2000) Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3-kinase inhibitor, wortmannin. Neuropharmacol. 39,643-651.

64.Konorski, J.1948.Conditioned reflexes and neuronal organization. Cambridge University Press, London.

65.Lattal, K.M. & Abel T. 2001. Different requirements for protein synthesis in acquisition and extinction of apatial preferences and context-evoked fear. J.Neurosci.21 , 5773-5780.

66.LeDoux, J.E., Cicchetti, P., Xagoraris, A. and Romanski, L.M. 1990. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J. Neurosci. 10,1062-1069.

67.LeDoux, J.E. 2000. Emotion circuits in the brain. Annu. Rev. Neurosci. 23,155-184.

68.LeDoux, J.E. 1994. The amygdala: contributions to fear and stress. Semin. Neurosci. 6,231-237.

69.Lee, H. & Kim, J.J. 1998. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J.Neurosci. 18, 8444-8454.

70.Liang KC. 1999. Pre- or post-training injection of buspirone impaired retention in the inhibitory avoidance task: involvement of amygdala 5-HT1A receptors. Eur J Neurosci 11:1491-1500.

71.Lin, C.H. et al. 2001.A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841-851.

72.Lisman, J. 1989.A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Aca. Sci. USA. 86,9574-9578.

73.Liu, J. et al. 1991.Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66,807-815.

74.Lopez-Ilasaca, M., Crespo, P., Pellici. P.G., Gutkind, J.S. and Wetzker, R. 1997. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI3-kinaseγ. Science 275,394-397.

75.Lu, K.T., Walker, D.L. & Davis, M. 2001.Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J. Neurosci. 21: RC162, 1-5.

76.Lu, Y.M., Mansuy, I.M., Kandel, E.R. & Roder, J. 2000 Calcineurin-mediated LTD of CABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 26,197-205.

77.Malleret, G. et al. 2001.Inducible and reversible enhancement of learning, memory, and long-term poentiation by genetic inhibition of calcineurin. Cell 104,675-686.

78.Mansbach RS, Geyer MA. 1988. Blockade of potentiated startle responding in rats by 5-hydroxytryptamine-1A receptor ligand. Eur J Pharmacol 156:375-383.

79.Ma QP, Yin MK, Ai MK, Han JS. 1991. Serotonergic projections from the nucleus raphe dorsalis to the amygdala in the rat. Neurosci Lett 134:21-24.

80.Maren, S. 1999. Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci. 22,561-567.

81.McKernan, M.G. and Shinnick-Gallagher, P. 1997. Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390,607-610.

82.Miller, T.M., Tansey, M.G., Johnson, E.M. and Greedon, D.J. 1997.Inhibition of phosphatidylinositol 3-kinase activity blocks depolarization and insulin-like growth factor I-mediated survival of cerebellar granule cells. J. Biol. Chem. 272, 9847-9853.

83.Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME. 1992. P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355:827-829.

84.Mogul DJ, Adams ME, Fox AP. 1993. Differential activation of adenosine receptors decreases N-type but potentiates P-type Ca++ current in hippocampal CA3 neurons. Neuron 10:327-334.

85.Mulkey, R.M., Endo, S., Shenolikar S. & Malenka, R.C. 1994.Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369,486-488.

86.Nader, K., Schafe, G.E. & LeDoux, J.E. 2000.Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406,722-726.

87.Nagai, M. 1992.The role of serotoninergic system in body temperature regulation. Physiol Res. 41:pp65-69.

88.Nguyen, P.V., Abel, T. and Kandel, E.R. 1994. Requirement of a cirtical period of transcription for induction of a late phase of LTP. Science 265,1104-1107.

89.Pavolov, I.P. 1927.Conditioned reflex: an investigation of the physiological activity of the cerebral cortex. (Oxford university Press, London).

90.Paxinos, G. & Watson, C. 1986 The rat brain in stereotaxic coordinates. (Academic Press, New York).

91.Penington MJ, Kelly JS, Fox AP. 1991. A study of the mechanism of Ca++ current inhibition produced by serotonin in rat dorsal raphe neurons. J Neurosci 11:3594-3609.

92.Perkinton, M.S., Sihra, T.S. and Williams, R.J. 1999. Ca++-permeable AMPA receptors induce phosphorylation of cAMP response element- binding protein through a phosphatidylinositol kinase signaling cascade in neurons. J. Neurosci. 19,5861-5874.

93.Pitkanen, A., savander, V. & LeDoux, J.E. 1997. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurocsi. 20, 517-522.

94.Rainnie DG. 1999. Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J.Neurophysiol 82:69-85.

95.Randall A, Tsien RW. 1995. Pharmacological dissection of multiple types of Ca++ channel currents in rat cerebellar granule neurons. J Neurosci 15:2995-3012.

96.Rescorla, R.A. 2001.Experimental extinction. In: Handbook of contemporary learning theories. ( eds. Mowrer, R.R. & Klein, S.) 119-154 (Erlbaum, Mahwah, NJ, USA).

97.Reuter H. 1996. Diversity and function of presynaptic calcium channels in the brain. Curr Opin Neurobiol 6:331-337.

98.Rhee JS, Ishibashi H, Akaike N. 1996. Serotonin modulates high-voltage-activated Ca++ channels in rat ventromedial hypothalamic neurons. Neuropharmacology 35:1093-1100.

99.Roberson, E.D., English, J.D., Adams, J.P., Selcher, J.C., Kondratick, C. and Sweatt, J.D. 1999. The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J. Neurosci. 19,4337-4348.

100.Rogan, M.T., Staubli, U.V. and LeDoux, J.E. 1997. Fear conditioning induces factor I-mediated survival of cerebellar granule cells. J. Biol. Chem. 272,9847-9853.

101.Rommel, C., Clarke, B.A., Zimmermann, S., Nunez, L., Rossman, R., Reid, K., Moelling, K., Yancopoulos, G.D. and Glass, D.J. 1999.Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286,1738-1741.

102.Sadikot AF, Parent A. 1990. The monoaminergic innervation of the amygdala in the squirrel monkey: an immunohistochemical study. Neuroscience 36:431-447.

103.Sala, C., Rudolph-Correia, S. & Sheng, M. 2000. Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein ( CREB) in hippocampal neurons. J. Neurosci. 20, 3529-3536.

104.Sara, S.J. 2000.Retrieval and reconsolidation: toward a neurobiology of remembering. Learn. Mem. 7.,73-84.

105.Schafe, G.E., Atkins, C.M., Swank, M.W., Bauer, E.P., Sweatt, J.D. and LeDoux, J.E. 2000. Activation of ERK/MAPK kinase in the amygdala is required for memory consolidation of Pavlovian fear conditioning. J. Neurosci. 20,8177-8187.

106.Schafe, G.E. and LeDoux, J.E. 2000. Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J. Neurosci. 20:RC96,1-5.

107.Scroggs RS, Foehring RC. 1993. Serotonin inhibits high-threshold Ca++ current in amygdala pyramidal neurons. Soc Neurosci Abstr 19:1126.

108.Seger, R. and Krebs, E.G. 1995. The MAPKs signaling cascade. FASEB J. 9,726-735.

109.Shapiro MS, Wollmuth LP, Hille B. 1994. Modulation of Ca++ channels by PTX-sensitive G-proteins is blocked by N-ethylmaleimide in rat sympathetic neurons. J Neurosci 14:7109-7116.

110.Shi, J., Townsend, M. & Constantine-Paton, M. 2000.Activity-dependent induction of tonic calcineurin activity mediates a rapid developmental downregulation of NMDA receptor currents. Neuron 28,103-114.

111.Soler, R.M., Dolcet, X., Encinas, M., Egea, J., Bayascas, J.R. and Comella, J.X. 1999. Receptors of the glial cell line-derived neurotropic factor family of neurotropic factors associative long-term potentiation in the amygdala. Nature 390,604-607.

112.Soderling, T. & Derkach, V.A. 2000.Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23,75-80.

113.Stutzmann GE, McEwen BS, LeDoux JE. 1998. serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J Neurosci 18:9529-9538.

114.Sun Q-Q, Dale N. 1999. G-proteins are involved in 5-HT receptor-mediated modulation of N-and P/Q- but not T-type Ca++ channels. J Neurosci 19:890-899.

115.Surmeier DJ, Bargas J, Hemmings HC Jr, Nairn AC, Greengard P. 1995. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 14:385-397.

116.Takahashi, T. & Momiyama, A. 1993. Different types of calcium channels mediate central synaptic transmission. Nature 366: 156-158.

117.Tang, Y-P. et al. 1999. Genetic enhancement of learning and memory in mice. Nature 401, 63-69.

118.Taussig R, Iniguez-Lluhi JA, Gilman AG. 1993. Inhibition of adenylyl cyclase by G1α. Science 261:218-221.

119.Viana F, Hille B. 1996. Modulation of high voltage-activated calcium channels by somatostatin in acutely isolated rat amygdaloid neurons. J Neurosci 16:6000-6011.

120.Vianna, M.R. et al. 2001 . Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc. Natl. Aca. Sci. USA 98, 12251-12254.


121.Wang SJ, Cheng LL, Gean PW. 1998. Cross-modulation of synaptic plasticity by β-adrenergic and 5-HT1A receptors in the rat basolateral amygdala. J Neurosci 19:570-577.

122.Wang SJ, Huang CC, Hsu KS. Tsai JJ, Gean PW. 1996. Inhibition of N-type calcium currents by lamotrigine in rat amygdalar neurons. NeuroReport 7:3037-3040.

123.Wang, J.H. & Kelly, P.T. 1997.Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca++ signaling mechanisms in hippocampal CA1 neurons. J. Neurosci. 17,4600-4611.

124.Weisskopf, M.G., Bauer, E.P. and LeDoux, J.E. 1999. L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J. Neurosci. 19,10512-10519.

125.Winder, D.G., Mansuy, I.M., Osman, M., Moallem, T.M. & Kandel, E.R. 1998.Genetic and pharmacological evidence for a novel, intermediated phase of long-term potentiation suppressed by calcineurin. Cell 92,25-37.

126.Winder, D.G. & Sweatt, J.D. 2001. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature Rev. Neurosci. 2, 461-474.

127.Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L. 1995. Comparative localization of serotonin 1a, 1c and 2 receptor subtype mRNAs in the rat brain. J. Comp. Neurol. 351:357-373.

128.Wu, SP., Lu, K.T., Chang, W.C. and Gean, P.W. 1999. Involvement of mitogen-activated protein kinase in hippocampal long-term potentiation. J. Biomed. Sci. 6,409-417.

129.Wymann, M.P. and Pirola, L. 1998. Structure and function of phosphoinositide 3-kinase. Biochem. Biophy. Acta 1436,127-150.

130.Yakel, J.L. 1997.Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. Trends Pharmacol. Sci. 18: 124-134.

131.Yao, R.J. and Cooper, G.M. 1995. Requirement for phosphatidylinositol 3-kinase in the prevention of apoptosis by nerve growth factor. Science 267,2003-2006.

132.Yu B, Shinnick- Gallagher P. 1997. Dihydropyridine- and neurotoxin-sensitive and –insensitive calcium currents in acutely dissociated neurons of the rat central amygdala. J Neurophysiol 77:690-701.

133.Zhuo et al. 1999.A selective role of calcineurin Aa in synaptic depotentiation in hippocampus. Proc. Natl. Aca. Sci. USA 96,4650-4655.

134.Zimmermann, S. and Moelling, K. 1999. Phosphorylation and regulation of Raf by Akt (protein kinadse B). Science 286, 1741-1744.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top