# 臺灣博碩士論文加值系統

(52.203.18.65) 您好！臺灣時間：2022/01/19 16:32

:::

### 詳目顯示

:

• 被引用:0
• 點閱:215
• 評分:
• 下載:28
• 書目收藏:1
 This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones, i.e. containing nonsingular kernels only. This implementation allows directly applying standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task; moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.
 ABSTRACT摘要誌謝目錄圖目錄符號說明第一章 緒論 1-1研究動機 1-2文獻回顧第二章 積分方程式公式 2-1基本方程式推導 2-2 輻射問題的積分方程式 2-3 散射問題的 積分方程式第三章常積分方程式公式 3-1 輻射問題的常積分方程式 3-2 散射問題的常積分方程式第四章數值實例 4-1 輻射問題的數值實例 4-2 散射問題的數值實例第五章結論參考文獻附錄A附錄B附錄C附錄D附錄E
 1. H. A. Schenck, “Improved integral formulation for acoustic radiation problem,” J. Acoust. Soc. Am. 44, 41-582. J. Burton and G. F. Miller, “The application of integral equation methods to the numerical solution of some exterior boundary value problem,” Proc. R. Soc. London, Ser. A 323, 201-210 (1971)3. S. A. Yang, “A boundary integral equation method for two-dimensional acoustic scattering problems,” J. Acoust. Soc. Am. 105, 93-105 (1999).4. S. A. Yang, “Evaluation of 2-D Green’s boundary formula and its normal derivative using Legendre polynomials, with an application to acoustic scattering problems,” Int. J. Num. Meth. Eng. (2001).5. V. D. Kupradze, Fundamental Problems in the Mathematical Theory of Diffractions, translated by C. D. Benster, NSB Rep. No. 2008 (1952).6. L. H. Chen and D. G. Schweikert, “Sound radiation from an arbitrary body,” J. Acoust. Soc. Am. 35, 1626-1632 (1963).7. G. H. Koopmann, L. Song, and J. B. Fahnine, “A method for computing acoustic fields based on the principle of wave superposition,” J. Acoust. Soc. Am. 86, 2433-2438 (1989).8. R. Jeans and I. C. Mathews, “The wave superposition method as a robust technique for computing acoustic fields,” J. Acoust. Soc. Am. 92, 1156-1166 (1992).9. D. T. Wilton, I. C. Mathews, and R. A. Jeans, “A clarification ofnonexistence problems with superposition method,” J. Acoust. Soc. Am. 94, 1676-1680 (1993).10. R. D. Miller, E. T. Moyer, Jr.,H. Huang, and H.Uberall, ”A comparison between the boundary element method and the wave superposition approach for the analysis of the scattered fields from rigid bodies and elastic shells,” J. Acoust. Soc. Am. 89, 2185-2196 (1991).11. P. A. Krutitskii, “A new approach to reduction of the Neumann problem in acoustic scattering to a non-hypersingular integral equation,” IMA J. Appl. Math. 64, 259-269 (2000).12. M. A. Jaswon and G. T. Symm, Integral Equation Methods in potential Theory and Elastostatics (Academic Press, London, 1977).13. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (John Wiley& Sons, New York, 1983).14. V. I. Smirnov, A Course of Higher Mathematics (Pergamon, Oxford, 1964), Vol. IV.15. I. G. Petrovsky, Lectures on Partial Differential Equations (Interscience, New York, 1954).16. J. Van Bladel, Electromagnetic Fields (McGraw-Hill, New York, 1964).17. Electromagnetic and Acoustic Scattering by Simple Shapes, edited by J. J. Bowman, T. B. A. Senior, and P. L. E. Uslenghi (Hemisphere, New York, 1987).18. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).19. K. K. Mei and J. G. Van Bladel, “Scattering by perfectly-conducting rectangular cylinders,” IEEE Trans. Antennas and Propagation 11, 185-192 (1963).20. K. Kobayashi, “Diffraction of a plane electromagnetic wave by a rectangular conducting rod (I)-rigorous solution by the Wiener-Hopf technique”, Bull. Facul. Sci. & Eng., Chuo University, 25, 229-261 (1982).21. E. Topsakal, A.Buyukaksoy , and M.Idemen , “Scattering of electromagnetic wave by a rectangular impedance cylinder,” Wave Motion 31, 273-296 (2000).22. S. A. Yang, “A solution method for two-dimensional potential flow about bodies with smooth surfaces by direct use of the boundary integral equation,” Commun. Num. Meth. Eng. 15, 469-478 (1999).23. J. Katz and A. Plotkin, Low-Speed Aerodynamics –From Wing Theory to Panel Methods (McGraw-Hill, New York, 1991).24. W. Benthien and H. A. Schenck, “Nonexistence and nonuniqueness problems associated with integral equation methods in acoustics,” Comput. Struct. 65, 295-305 (1997).25. S. A. Yang, “Acoustic scattering by a hard or soft body across a wide frequency range by the Helmholtz integral equation method,” J. Acoust. Soc. Am. 102, 2511-2520 (1997).
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 使用雷建德多項式來計算二維格林邊界方程式及其法向導數並應用於聲波繞射場 2 時頻域方法應用於聲波非線性係數及特性分析之研究 3 渦漩對翼片性能影響之研究 4 頂端附帶一集結質量之楔形樑在水中的自由振動分析 5 波浪中兩併行船舶之耐海性實驗驗證 6 最佳化船型預測之研究 7 應用電腦輔助電話系統進行多用途管理帳戶之消費者購買決策研究 8 制振塗料對結構聲輻射抑制效能分析 9 室內聲場之餘響時間與聲源特性對空間聲音定位之影響 10 不同邊界平板聲音激振下輻射功率之理論計算 11 聲音互動產生的動態空間 12 表面聲波波傳理論之研究及其在液體感測器上之應用 13 都市休閒空間的民族誌研究:以台南市PUB為例 14 非均勻應力分佈在鋼板中之疲勞裂縫進展行為探討 15 隨機過程在線性迴歸ME模型下的估計問題

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室