(3.232.129.123) 您好!臺灣時間:2021/02/26 20:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉彩吉
研究生(外文):Tsai-Ji Liou
論文名稱:應用大渦紊流模擬(LES)模式於二維與三維之通道內紊流流場及其熱傳研究
論文名稱(外文):Large eddy simulation 2D and 3D turbulent channel flow and heat transfer
指導教授:吳鴻文吳鴻文引用關係
指導教授(外文):Horng-Wen Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:造船及船舶機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:103
中文關鍵詞:紊流
外文關鍵詞:turbulent
相關次數:
  • 被引用被引用:4
  • 點閱點閱:513
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本文以元素疊代(Element-by-Element)為基礎的投射有限元素流體解析法(projection finite element fluid analysis)為主,對於均勻紊流流過二維混合對流通道之無障礙物,具障礙物及三維強制對流通道之無障礙物,具障礙物的暫態流動及其傳熱現象進行分析。以EBE-PCG投射有限元素法取代以往有限元素法解無因次之Navier-Stokes Equation及能量方程式,乃是為了能減少矩陣的儲存量,及減少電腦上的計算時間。並且運用Large Eddy Simulation的紊流模式來模擬紊流流場,以前置處理之共軛梯度法(preconditioned conjugate gradient method)加以疊代而解出其速度場,壓力場和溫度場。
本文提供了一套EBE-PCG數值模擬二維和三維紊流流場的計算方法及結果,經由文獻的結果驗証,確認本計算方法的準確及可靠性。這些結果可以瞭解二維及三維通道內混合對流的紊流流場現象及熱傳效應。
ABSTRACT
This paper used Element-by-Element projection finite element fluid analysis turbulent flow and heat transfer for uniform turbulent flow in a 2D mixed convection channel and 3D force convection channel with heated block. Using Element-by-Element finite element preconditioned conjugate gradient method replaces the traditional finite element method for the non-dimensional Navier-Stokes Equation and Energy Equation. It can reduce matrix storage and computational time. Using large eddy simulation method turbulent model simulates turbulent flow with preconditioned conjugate gradient method and iterates to obtain velocity field, pressure field, and temperature field.
This paper offered a set of EBE-PCG numerical simulation method to simulate 2D and 3D turbulent flow. It can confirm that this method is precise and reliable by references. These conclusions can help us understand the phenomenon of 2D and 3D mixing convection of turbulent flow in the channel and heat transfer.
目 錄
摘要 I
目錄 II
圖目錄 Ⅳ
符號說明 ⅩII
第一章、 前言
1-1 研究動機及目的 1
1-2 文獻回顧 2
第二章、 EBE-PCG
2-1 利用Element-By-Element觀念 5
2-2 利用Preconditioned共軛梯度法觀念 6
第三章、 數學模式及數值演算法
3-1 介紹 9
3-2 數學方程式 9
3-3 基本統御方程式之無因次化 13
3-4 紊流模式 19
3-5 利用FEM方法求解 21
3-5 利用投射觀念(Projection method) 25
3-6 對於通道出口的處理 27
第四章、 結果與討論
4-1 本文之數值解與參考文獻之比較 31
4-2 風道內具一方形障礙物之模式 32
4-2-1 在混合對流下,不同Gr的值對流場的影響 33
(Re=1200)
4-2-2 在混合對流下,不同Gr的值對流場的影響 35
(Re=2500,3800)
4-2-3 在混合對流下,不同 的值對流場之影響 37
4-3 風道內無障礙物之模式 37
4-4 3D風道內無障礙物之模式 39
4-5 3D風道內具有一方形障礙物之模式 41

第五章、 總結 43
參考文獻 101
參考文獻
[1]T.J.R. Hughes, M. ASCE Itzhak Levit, and James Winget, ”Element-By-Element Implicit Algorithms for Heat Conduction,” Journal of Engineering Mechanics v109 n2 Apr 1983 p 576-585.
[2]T.J.R. Hughes, Itzhak Levit and James Winget, “An Element-By-Element Solution Algorithm For Problems of Structural and Solid Mechanics,” Computer Methods in Applied Mechanics and Engineering v36 n2 Feb 1983 p241-254 0374-2830.
[3]Miguel Ortiz, Peter M. Pinsky and Robert L. Taylor, “Unconditionally Stable Element-By-Element Algorithms for Dynamic Problem,” Computer Methods in Applied Mechanics and Engineering v36 n2 Feb 1983 p223-239 0374-2830.
[4]Thomas J.R. Hughes, James Winget, Itzhak Levit and T.E. Tezduyar, “New Alternate Directions Procedure in Finite Element Analysis Based Upon EBE Approximate Factorization,” Proceedings of the Symposium on Recent Developments in Computer Methods for Nonlinear Solid and Structural Mechanics, Proceedings of the ASME Joint Meeting of Fluid Engineering, Applied Mechanics and Bioengineering, University of Houston, Texas, June 1983.
[5]Thomas J.R. Hughes, A. Raefsky, A. Muller, J. Winget and I. Levit, “A Progress Report on EBE Solution Proceedings in Solid Mechanics,” Proceedings of the Second International Conference on Nonlinear Problems, Barcelona, Spain, April 1984.
[6]J.M.Winget, “Element by Element Solution Procedures for Nonlinear transient heat condition analysis,” Ph.D. Thesis, California Institute of Technology,1983.
[7]Itzhak Levit, “Element-By-Element Solvers of Order N,” Computers and Structures v27 n3 1987 p357-360.
[8]Graham F.Carey and Bo-nan Jiang, “Element-By-Element Linear and Nonlinear Solution Schemes,” Communications in Applied Numerical Methods, Vol 2 1986 p145-153.
[9]A.j. Wathen, ”An Analysis of Some Element-By-Element Techniques,” Computer Methods in Applied Mechanics and Engineering v74 1989 p271-287.
[10]Jocelyne Erhel, Alice Traynard and Marina Vidrascu, “An Element-By-Element Preconditioned Conjugate Gradient Method Implemented on Vector Computer,” Parallel Computing v17 1991 p1051-1065
[11] Manolis Papadrakakis and Michael C. Dracopoulos, “A Global Preconditioner for the Element-By-Element Solution Methods,” Computer Methods in Applied Mechanics and Engineering v88 1991 p275-286
[12] M.P. Reedy and J.N. Redy, “Penalty Finit Element Analysis of Incompressible Flows Using Element by Element Solution Algorithms,” Computer Methods in Applied Mechanics and Engineering v100 1992 p169-205
[13] Akira Mizukami, “Element-by-Element Penalty/Uzawa Formulation for Large Scale Flow Problems,” Computer Methods In Applied Mechanics and Engineering v112 1994 p283-289.
[14] Zhiping Li, M.B.Reed , ”Convergence Analysis for An Element-by-Element Finite Element Method,” Computer Methods in Applied Mechanics and Engineering V123 1995 P33-42.
[15] Adefemi Sunmonu, “Implementation of A Novel Element-BY-Element Finite Element Method on the Hypercube,” Computer Methods in Applied Mechanics and Engineering v123 1995 p43-51.
[16] M.P. Redy and J.N. Redy, “Multigrid Methods to Accelerate Convergence of Element-By-Element Solution Algorithms for Viscous Incompressible Flows,” Computer Methods in Applied Mechanics and Engineering v132 1996 P179-193.
[17] Y. Nakabayashi, H. Okuda and G.Yagawa, “Parallel Finite Element Fluid Analysis on An Element-By-Element Basis,” Computational Mechanics v18 1996 p377-382.
[18] A.J Chorin, “Numerical Solution of Navier-Stokes Equations,” Math. Comp., Vol 22 1968 pp.745-762.
[19] B. Ramaswamy, T.C. Jue and J.E. Akin, ”Semi-implicit and Explicit Finite Element Schemes for Coupled Fluid/Thermal Problems,” Int. J. Numer. Methods Eng. v34 1992 pp.675-696.
[20] T.J.R. Hughes, I. Levit and J.M. Winget, “Implicit, Unconditionally Stable Algorithms for Heat Conduction Analysis,” J. Eng. Mechanics Division ASCE v109 1983 p576-585.
[21] T.J.R. Hughes and J.M. Winget, ”Solution Algorithms for Nonlinear Transient Heat Conduction Analysis Employing Element by Element Iteratives Strategies,” Comput. Meth. Appl. Mechanics Eng. v52 1985 p711-815.
[22] Sungsu. Lee. ”Lager Eddy Simulation of Flow past a Square Cylinder Using Finite Element Method,”1997。

[23]林明德,雙模組電子元件散熱特性之探討,國立成功大學工程科學研究所碩士論文,1997。
[24]莊和達,運用EBE-PCG及投射有限元素法計算不可壓縮流體之熱傳現象,國立成功大學造船及船舶機械工程研究所碩士論文,2000。
[25]ATSUSHI OKAJIMA.”Strouhal numbers of rectangular cylinders,” J. Fluid Mech vol. 123. 379-398. 1982
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔