跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬成驊
研究生(外文):Cheng-Hua Ma
論文名稱:時頻域方法應用於聲波非線性係數及特性分析之研究
論文名稱(外文):Application of time – frequency analysis for nonlinear coefficient and properties
指導教授:涂季平
指導教授(外文):Gee-Pinn Too
學位類別:碩士
校院名稱:國立成功大學
系所名稱:造船及船舶機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:75
中文關鍵詞:聲波非線性係數非平穩訊號小波轉換時頻分析
外文關鍵詞:wavelet transform.acoustics nonlinear coefficientnonstationary signaltime – frequency analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
非線性係數及非線性特性在稍早之研究中均以頻域分析方法為主導,本研究以時頻域分析方法,探討此非線性係數及特性,在不同分析方法下之適用性。傳統訊號分析法不外乎是快速傅立葉轉換,但要處理的訊號是非平穩訊號時,需使用時頻分析的方法,以同時得知訊號時間和頻率的資訊。因此本文中使用小波轉換來分析聲波之非線性訊號,並比較各方法分析之結果及適用性。本研究之目的在於希望以各種時頻域分析方法去對聲波的非線性現象作分析,探討在各種訊號分析方法下,多少週期之聲音脈衝發射波( tone burst ) ,才能準確的預估非線性係數及非線性特性。
We applied the frequency analysis for nonlinear coefficient and properties early in the study. The time – frequency analysis is applied for nonlinear coefficient and properties in this study. We will discuss the results for different time – frequency analysis methods. The fast Fourier transform is a traditional way to analyze the signal. But when we handle the nonstationary signal, we need the time – frequency analysis for obtaining the time information and frequency information from the signal simultaneously. We use the wavelet transform to analyze the nonlinear signal of the tone burst. We then compare the results with different time – frequency analyses. The purpose of the study is to analyze the acoustics nonlinear properties by different time – frequency analyses. We will use several signal processing to provide examples of how many cycles tone burst can exactly predict the nonlinear coefficient and properties.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號 XII
第一章 緒論1
1.1 研究動機與目的 1
1.2 文獻回顧3
1.2.1聲波非線性參數 3
1.2.2非線性波動方程式5
1.2.3快速傅立葉轉換 7
1.2.4短時傅立葉轉換 8
1.2.5小波轉換 8
第二章 聲波傳遞之非線性特性 9
2.1非線性前進波方程式之理論推導 9
第三章 時頻分析 14
3.1前言 14
3.2傅立葉分析 14
3.2.1 傅立葉級數展開 14
3.2.2 傅立葉轉換 15
3.2.3 正規化和加窗效應 18
3.2.4 傅立葉分析的特性 20
3.3短時傅立葉轉換 23
3.4奈奎斯取樣定理 29
第四章 小波轉換30
4.1時頻的定位30
4.2小波轉換簡介 31
4.3小波轉換31
4.3.1 Hilbert 空間 31
4.3.2小波定義 32
4.4 Morlet小波分析 33
4.5 非線性聲波訊號之 Morlet小波分析 35
4.5.1單頻訊號35
4.5.2多頻訊號 38
第五章訊號分析結果與討論 43
5.1前言 43
5.2傅立葉級數展開計算結果 50
5.3快速傅立葉轉換計算結果 51
5.4小波轉換計算結果 55
5.5傅立葉級數展開、快速傅立葉轉換及小波轉換計算 Beta 值誤差結果比較 68
第六章 結論與未來展望 70
6.1 結論 70
6.2 未來展望71
參考文獻72
自 述75
【1】J.C. Goswamin, and A.K. Chan, “ Fundamentals of wavelets : theory, algorithms, and applications ”, John Wiley & Sons, Inc.,1999.
【2】董世芳, 涂季平,”聲波傳遞對液體介質特性參數預估之研究 ”, 國立成功大學造船暨船舶機械工程研究所, 碩士論文, 台灣台南, 民國八十三年六月.
【3】吳健安, 涂季平,”聲波於水中傳遞之非線性特性之研究 ”, 國立成功大學造船暨船舶機械工程研究所, 碩士論文, 台灣台南, 民國八十六年六月.
【4】S. Saito, “ Measurement of the acoustic nonlinearity parameter in liquid media using focused ultrasound ”, J. Acoustics. Soc. Am. 93(1), Jan. , 1993.
【5】N. Endoh and H. Kibukawa, “ Measurement of nonlinearity parameter in liquid-like media using Time-Of-Flight Method under small Pressure-Jump condition ”, 13th ISNA, Advances in Nonlinear Acoustics, pp. 358-363, 1993.
【6】V. V. Sokolov, “ Determination of the Nonlinearity Parameter of Magnetic Fluids ”, 13th ISNA, Advances in Nonlinear Acoustics, pp. 382-386, 1993.
【7】X. F. Gong, Z. M. Zhu, B. Fan, D. Zhang, “ Parametric effect and nonlinear parameter in biological media ”, 12th ISNA, Advances in Nonlinear Acoustics, pp. 397-401, 1992.
【8】J. M. Burgers, “ A mathematical model illustrating the theory of turbulence “ ,Advances in Applied Mechanics, Vol. 1, Academic press, New York ,171-199, 1948.
【9】E. A. Zaboloyskaya and R. V. Khokhlov, “ Quasi-plane waves in the nonlinear acoustics of confined beams. “, Sov. Phy. Acoust. 15(1), 35-40, 1969.
【10】E. A. Zaboloyskaya and R. V. Khokhlov, “ Convergent and divergent sound beams in nonlinear media “ , Sov. Phy. Acoust. 16(1), 39-42, 1970.
【11】V. P. Kuznetsov, “ Equation of nonlinear acoustics ”, Sov. Phys. Acoust. 16(4), 467-470, 1971.
【12】N. S. Bakhvalov, Y. M. Zhlieikin, E. A. Zabolotskaya, and R. V. Khokhlov, “ Nonlinear propagation of a sound beam in a nondissipative medium ”, Sov. Phys. Acoustic. 22(4), 272-274(1976) .
【13】N. S. Bakhvalov, Y. M. Zhlieikin, E. A. Zabolotskaya, and R. V. Khokhlov, “ Propagation of finite amplitude sound beams in dissipative medium ”, Sov. Phys. Acoustic. 24(4), 271-275(1978).
【14】N. S. Bakhvalov, Y. M. Zhlieikin, E. A. Zabolotskaya, and R. V. Khokhlov, “ Harmonic generation in sound beams ”, Sov. Phys. Acoustic. 25(2), 101-106(1979).
【15】S. I. Aanonsen T. Barkave, J. Naze Tjotta and S. Tjotta, “ Distortion and harmonic generation in the nearfield of a finite amplitude sound beam ”, J. Acoust. Soc. Am. 75, 749-768, 1984.
【16】B. E. McDonald and Ambrosiano, “ High order upwind flux methods for scalar hyperbolic conservation laws ”, J. Comp. Phys. , 56, 448-460, 1984.
【17】B. E. McDonald and W. A. Kuperman, “ The wave field of a weak shock at a caustic ”, Proc., IMACS Symp. On Computer Methods for Partial Differential Equations, Edited by R. Vichnevetsky and R. Stepleman, Lehigh Univ. 1984.
【18】B. E. McDonald and W. A. Kuperman, “ Time Domain solution of the parabolic equation including nonlinearity ”, Comp. & Math. W. Appl. 11, 843-851, 1985.
【19】B. E. McDonald and W. A. Kuperman, “ Time domain formation for pulse propagation including nonlinear behavior at acoustic ”, J. Acoust. Soc. Am. 81(2), 1406-1417, 1987.
【20】G. P. Too and J. H. Ginsberg, “ Nonlinear progressive wave equation model for transient and steady-state sound beams ”, J. Acoust. Soc. Am. 91(1), 59-68(1992) .
【21】李昔聰, 涂季平,”高強圓形聲束之損耗影響“, 國立成功大學造船暨船舶機械工程研究所, 碩士論文, 台灣台南, 民國八十二年六月.
【22】Cooley, J. W.,and J. W. Tukey,” An algorithm for the machine calculation of complex Fourier series,” Mathematics of Computation, Vol. 19, No.90, pp. 297-301, 1965.
【23】D. Gabor. “ Thory of communication. ”, J. IEE. 93: 429-457, 1946.
【24】Stéphane Mallat, “ A Wavelet Tour of Signal Processing ”, Academic Press, USA, 1998.
【25】Ingrid Daubechies, “ Ten Lectures on Wavelets ”, Society for Industrial and Applied Mathematics, U.S.A., 1992.
【26】Yu Kaiping, Ye Jiyuan, Zou Jingxiang, Yang Bingyuan, Yang Hua, “ Missile flutter experiment and data analysis using wavelet transform ”, Journal of sound and vibration, to be published, 2002.
【27】E. A. Zaboloyskaya and R. V. Khokhlov, “ Quasi-plane waves in the nonlinear acoustics of confined beams ”, Sov. Phy. Acoust. 15(1), 35-40, 1969.
【28】E. A. Zaboloyskaya and R. V. Khokhlov, “ Convergent and divergent sound beams in nonlinear media ”, Sov. Phy. Acoust. 16(1), 39-42, 1970.
【29】Thomas P. Krauss, Loren Shure, John N. Little,” Signal Processing Toolbox User’s Guide “, The Math Works, Inc., U.S.A., 1995.
【30】E. O. Brigham, Jr., 黎文明譯著,”The Fast Fourier Transform ”, 復漢出版社, 台灣, 民八十年.
【31】Alan V. Oppenheim,” Discrete-Time Signal Processing “, Prentice Hall, U.S.A., 1999.
【32】Albert Boggess, and Francis J. Narcowich, “ A First Course in Wavelets with Fourier Analysis ”, Prentice Hall, United States of America, 2001.
【33】National Instruments Corporation, “ Signal Processing Toolset Reference Manual ”, National Instruments Corporation, U.S.A., 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊