跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林詩婷
研究生(外文):Shih-Ting Lin
論文名稱:I.FldA及免疫球蛋白重鏈基因於胃黏膜相關性淋巴組織淋巴瘤中所扮演之角色II.探討FlgK於幽門桿菌感染中之作用
論文名稱(外文):I.The roles of FldA protein and heavy chain of immunoglobulin gene in the gastric MALToma. II. The effect of FlgK in Helicobacter pylori infection
指導教授:許博翔許博翔引用關係吳俊忠
指導教授(外文):Bor-Shyang SheuJiunn-Jong Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:128
中文關鍵詞:鞭毛免疫球蛋白重鏈基因黏膜相關性淋巴組織淋巴瘤幽門桿菌
外文關鍵詞:PCR clonalityHelicobacter pylorimucosa-associated lymphoid tissue lymphoma (MALTflagellum
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
幽門桿菌是一株革蘭氏陰性且必須生長於微需氧環境的一隻細菌,屬於人類胃腸部之病原菌。目前知道幽門桿菌與一些胃腸疾病之發生有關,如胃潰瘍、十二指腸潰瘍、胃癌以及黏膜相關性淋巴組織淋巴瘤。先前有報導指出一個大小19 kDa的幽門桿菌蛋白FldA與黏膜相關性淋巴組織淋巴瘤之形成有關連,對於此蛋白是否真的與黏膜相關性淋巴組織淋巴瘤形成有關,或能否應用於預測黏膜相關性淋巴組織淋巴瘤之復原程度仍然是個未知數。因此在論文的第一部份以純化之FldA蛋白利用西方墨點法進行病人血清分析,此外利用免疫球蛋白重鏈基因的PCR分析淋巴瘤中B淋巴球的clonality。結果顯示抗FldA抗體在黏膜相關性淋巴組織淋巴瘤患者中出現之機率較對照組高(41.2% vs 8.7%),而即使在黏膜相關性淋巴組織淋巴瘤完全消退之病人身上,其抗FldA抗體會持續存在至少有12個月,由這個數據顯示抗FldA抗體或許可以當成一個血清標誌,但並不是一個主要決定淋巴瘤消退之因子。經由淋巴瘤組織所萃取之染色體,結果顯示約有八成的病人在治療前呈現monoclonality,既使經病理學判定為完全恢復之病人中仍有三分之一為monoclonality。此結果顯示PCR clonality也不適合用於預測黏膜相關性淋巴組織淋巴瘤之恢復情況。
幽門桿菌的鞭毛對於細菌建立菌落叢扮演一個重要之角色,目前知道在鞭毛之合成需要四十多個基因之參與,FlgK為一構成鞭毛之蛋白,經序列分析知道其與沙門桿菌的Hook-associated protein 1(HAP1)具相似性。在實驗室先前的研究發現在flgK基因被中斷後,幽門桿菌缺乏鞭毛之形成且喪失運動能力,同時在小鼠的感染模式中也發現flgK變異株在胃黏膜層所造成之高密度菌體附著量比野生株少。目前FlgK蛋白在幽門桿菌中所扮演的角色仍不清楚,所以在論文的第二部份為構築FlgK蛋白之表現質體,並且將此重組FlgK蛋白純化出來做進一步之分析。藉由將flgK基因植入pET-30b表現質體而成功地得到重組FlgK蛋白,再利用鎳離子親和管柱將重組FlgK蛋白純化出,經由西方墨點法及N端胺基酸序列分析確認其序列之正確性。抗重組FlgK蛋白之多株抗體也製備成功,利用此多株抗體的存在下可於體外抑制幽門桿菌之運動性。在小鼠研究上設計三組實驗分別為給予小鼠野生株及變異株,或給予重組FlgK蛋白免疫過小鼠野生株。結果發現在免疫過小鼠的胃中,幽門桿菌的菌落密度在一週時比四週時高。以ELISA分析各組小鼠之血清,發現在免疫過小鼠中其抗重組FlgK蛋白抗體量較餵與野生株組高,而比較免疫過小鼠在一週與四週之差異,則看到在一週時抗體量較高。分析在免疫過小鼠所引起之專一性淋巴球對於重組FlgK蛋白之反應,結果可以看到免疫小鼠在第一週時的增生現象低於野生株組,但在四週時則明顯高於野生株組。由抗體強度、淋巴球及菌落密度三者相互結合比較,顯示以重組FlgK蛋白免疫小鼠具有降低幽門桿菌感染之菌落密度,且對重組FlgK蛋白具專一性反應之淋巴球可能扮演主要之角色。
總和以上所述,在本論文中看到抗FldA抗體或許可以當成一個血清標誌,但並不是一個主要決定淋巴瘤消退之因子,且PCR clonality不適合用於預測黏膜相關性淋巴組織淋巴瘤之恢復情況;另一方面以rFlgK免疫過之小鼠可降低幽門桿菌感染之菌落密度。
Helicobacter pylori is a gram-negative, microaerophilic bacterium and human gastrointestinal pathogen. The bacterium causes gastric ulcers, duodenal ulcers, gastric cancer, and mucosa-associated lymphoid tissue lymphoma (MALToma). Previous reported that the development of gastric MALToma is associated with a 19 kDa protein (FldA) of H. pylori. Whether this protein can predict or correlate with regression of the MALToma remains unclear. The first part of my project was to purify the FldA protein and analyze patient’s serum by Western blotting. In addition, I also detected the clonality of immunoglobin heavy chain from MALToma tissues with PCR. The prevalence rate of anti-FldA antibodies was higher in MALToma patients’s sera than in the control sera (41.2 vs 8.7%). The anti-FldA antibodies persisted until the end of the 12 months even after the complete regression of MALToma. These data suggest that anti-FldA antibodies might serve as a serological marker but not the determinant of tumor regression. Analysis of the DNA extracted from serial MALToma’s tissues revealed that 80% of MALToma patients before treatment exhibited PCR monoclonality. Persisted monoclonality was found in nearly 1/3 of patients despite of the histological regression suggesting that the clonality could not be used to predict the regression of MALToma patients.
The flagellum of H. pylori has been shown to play an important role in colonization. There are more than forty genes involved in the biosynthesis of flagella. The FlgK protein, a component of flagella, is a homologue of hook-associated protein 1 (HAP1) of Salmonella. In our laboratory, the flgK isogenic mutant was constructed. Neither flagella nor motility was in the mutant. In the murine model, the isogenic strain also showed less colonization density than that of wild-type strain in the mucus layer of stomach. At present, the role of FlgK in H. pylori is still unknown. The second part of my project was to construct the FlgK expression vector and purify this protein for further studies. The flgK gene was inserted into pET-30b expression vector and the recombinant FlgK (rFlgK) protein was expressed successfully. After purified by Ni2+-affinity column, the rFlgK protein was confirmed by Western blot and N-terminal amino acid sequence analysis. The polyclonal antibody against rFlgK was also produced. The motility of H. pylori was inhibited in the medium mixed with rFlgK polyclonal antibodies. In murine model, three groups of experiments were designed including mice were inoculated with wild-type and mutant-type of strain and rFlgK immunized mice were inoculated with wild-type strain. It was found that the colonization density of H. pylori in 1 week was higher than in 4 weeks in rFlgK immunized mice. The anti-rFlgK antibody titers in immunized mice were higher than that of unimmunized mice. Compare the titers between 1 and 4 weeks in immunized mice, the antibody titers were higher in 1 week. To analyze the specific lymphocyte response triggered by rFlgK in immunized mice. There were significantly lower proliferation responses in 1 week than unimmunized mice. Whereas, the proliferation responses were significantly higher in 4 weeks. These data showed that rFlgK immunization could reduce the colonization density and specific lymphocyte response may play the major role.
In conclusions, anti-FldA antibodies might can as a serological marker but not the determinant of tumor regression. In addition, PCR clonality cannot be used to predict the regression of MALToma. The H. pylori colonization density can be reduced in rFlgK immunized mice.
目錄
中文摘要1
英文摘要3
誌謝6
目錄
表目錄9
圖目錄10
符號及縮寫11
緒論13
Part I: FldA31
材料與方法31
一、血清及檢體來源31
二、儀器與藥品31
三、重組蛋白之誘導( induction )31
四、重組蛋白純化32
五、重組蛋白質定量32
六、SDS-PAGE蛋白質膠體電泳33
七、西方墨點法33
八、從石蠟(paraffin)固定之組織抽取染色體34
九、Nested 聚合�@連鎖反應(Nested PCR)34
結果36
一、FldA蛋白之表現與存化36
二、MALToma病人對FldA之血清變化36
三、MALToma組織中免疫球蛋白重鏈之clonality38
討論40
Part II: FlgK43
材料與方法43
一、菌種及動物來源43
二、儀器與藥品43
三、細菌的鑑定、 培養與保存43
四、DNA之抽取44
五、聚合�@連鎖反應(PCR)45
六、限制�@切割45
七、DNA接合反應(ligation)46
八、勝任細胞(competent cells)的製備46
九、大腸桿菌轉型作用47
十、重組蛋白之誘導(induction)47
十一、親合性鎳離子螯合樹脂色層分析法純化重組蛋白質47
十二、蛋白質胺基酸序列分析49
十三、多株抗體 (polyclonal antibody)之製備49
十四、ELISA49
十五、幽門桿菌RNA之抽取50
十六、RT-PCR cDNA之製備50
十七、運動性 (motility)試驗51
十八、活體動物胃中之細菌附著密度分析(colonization density)51
十九、淋巴球細胞增生分析(Lymphocyte proliferation assay)52
結果53
一、 構築FlgK蛋白之表現載體53
二、 FlgK蛋白之表現與純化54
三、 抗rFlgK多株抗體之製備55
四、 幽門桿菌flgK變異株對其他鞭毛合成基因之影響56
五、 幽門桿菌體外運動性之抑制56
六、 rFlgK免疫過之小鼠降低幽門桿菌菌落叢之密度57
七、 小鼠血中抗體強度及脾臟細胞增生分析59
八、 病人血清抗rFlgK及flagellin抗體之分析61
討論63
參考文獻68
圖表81
附錄113
自述128
著作權聲明129
參考文獻
Aebischer, T., B. Lucas, J. Koesling, D. Bumann, and T. F. Meyer. 2000. How CD4+ T cells may eliminate extracellular gastric Helicobacter? J. Biotech. 83: 77-84.
Alm, R. A., L. L. Ling, D. T. Moir, B. L. King, E. D. Brown, P. C. Doig, D. R. Smith, B. Noonan, B. C. Guild, B. L. Dejonge, G. Carmel, P. J. Tummino, A. Caruso, M. U. Nickelsen, D. M. Mills, C. Ives, R. Gibson, D. Mergerg, S. Mills, Q. Jlang, D. E. Taylor, G. F. Vovis, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176-180.
Andrutis, K. A., J. G. Fox, D. B. Schauer, R. P. Marini, X. Li, L. Yan, C. Josenhans, and S. Suerbaum. 1997. Infection of the ferret stomach by isogenic flagella mutant strains of Helicobacter mustelae. Infect. Immun. 65: 1962-1966.
Asahi, M., T. Azuma, S. Ito, Y. Ito, H. Suto, Y. Nagai, M. Tsubokawa, Y. Tohyma, S. Maeda, M. Omata, T. Suzuki, and C. Sasakawa. 2000. Helicobacter pylori CagA protein delivered into the gastric epithelial cells can be tyrosine phosphorylated. J. Exp. Med. 191: 593-602.
Atherton, J. C., P. Cao, R. M. Peek, M. K. R. Tummuru, M. J. Blaser, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori: association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270: 17771-17777.
Atherton, J. C., R. M. Peek, K. T. Tham, T. L. Cover, and J. B. Blaser. 1997. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 112: 92-99.
Bamford, K. B., X. Fan, and S. E. Crowe. 1998. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 114: 482-492.
Bauerfeind, P., R. Garner, B. E. Dunn, and H. L. Mobley. 1997. Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut 40: 25-30.
Blanchard, T. G., S. J. Czinn, R. Maurer, W. D. Thomas, G. Soman, and J. G. Nedrud. 1995. Urease-specific monoclonal antibodies prevent Helicobacter pylori infection in mice. Infec. Immun. 63: 1394-1399.
Blanchard, T. G., J. G. Nedrud, and S. J. Czinn. 1999. Local and systemic antibody responses in humans with Helicobacter pylori infection. Can. J. Gastroenterol. 13: 591-594.
Blanchard, T. G., J. G. Nedrud, E. S. Reardon, and S. J. Czinn. 1999. Qualitative and quantitative analysis of the local and systemic antibody response in mice and humans with Helicobacter immunity and infection. J. Inf. Dis. 179: 725-728.
Blaser, M. J. 1993. Helicobacter pylori: microbiology of a slow bacterial infection. Trends Microbiol. 1: 255-260.
Blaser, M. J. 1994. Parasitism by the slow bacterium Helicobacter pylori leads to altered gastric homeostasis and neoplasia. J. Clin. Invest. 94: 4-8.
Blaser, M. J., G. I. Perez-Perez, H. Kleanthous, T. L. Cover, R. M. Peek, P. H. Chyou, G. N. Stemmermann, and A. Nomura. 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55: 2111-2115.
Breed, R. S., E. G. Murray, and A. P. Hitchens. 1948. Bergey’s Manual of Determinative Bacteriology ( 6 ed ). Baltimore, MD, Williams and Wilkins.
Cellini, L., L. Marzio, and G. Ferrero. 2001. Transmission of Helicobacter in an animal model. Dig. Dis. Sci. 46: 62-68.
Censini, S., C. Lange, Z. Xiang, J. E. Crabtree, P. Ghiara, M. Borodovsky, R. Rappuoli, and A. Covacci. 1996. cagA, A pathogenicity island of Helicobacter pylori, encodes type I specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93: 14648-14653.
Chang, C. S., L. T. Chen, Y. C. Yang, J. T. Lin, K. C. Chang, and J. T. Wang. 1999. Isolation of a Helicobacter pylori protein, FldA, associated with mucosa-associated lymphoid tissue lymphoma of the stomach. Gastroenterology 117: 82-88.
Corthesy-Theulaz, I. E., S. Hopkins, D. Bachmann, P. E. Saldinger, N. Porta, R. Haas, Y. Zheng-Xin, T. Meyer, H. Bouzourence, A. L. Blum, and J. P. Karehenbuhl. 1998. Mice are protected from Helicobacter pylori infection by nasal immunization with attenuated Salmonella typhimurium phoPc expressing urease A and B subunits. Infect. Immun. 66: 581-586.
Covacci, A., S. Censini, M. Bugnoli, R. Petracca, D. Burroni, G. Macchia, A. Massone, E. Papini, Z. Xiang, N. Figura, and R. Rappuoli. 1993. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc. Natl. Acad. Sci. USA 90: 5791-5795
Cover, T. I., M. K. Tummuru, P. Cao, S. A. Thompson, and M. J. Blaser. 1994. Divergence of genetic sequence for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 269: 10666-10673.
Cover, T. L., and M. J. Blaser. 1992. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 267: 10570-10575.
Crabtree, J. E., J. D. Taylor, J. I. Wyatt, R. V. Heatley, T. M. Shallcross, D. S. Thompkins, and B. J. Rathbone. 1991. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet 338: 332-335.
Cussac, V., R. L. Ferrero, and A. Labigne. 1992. Expression of Helicobacter pylori urease gene in Escherichia coli growth under nitrogen-limiting conditions. J. Bacteriol. 174: 2466-2473.
de Bernard, M. 1995. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J. Biol. Chem. 270: 23937-23940.
Diss, B. C., H. Peng, A. C. Wotherspoon, P. G. Isaacson, and L. Pan. 1991. Detection of monoclonanity in low-grade B-cell lymphomas using the polymerase chain reaction is dependent on primer selection and lymphoma type. J. Pathol. 169: 291-295.
Dixon, M. F., R. M. Genta, J. H. Yardley, and P. Correa. 1996. Classification and grading of gastritis. The updated Sidney system. Am. J. Surg. Pathol. 20: 1161-1181.
Du, M. Q., and P. G. Isaccson. 2002. Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol. 3: 97-104.
Dunn, B. E. 1997. Localization of Helicobacter pylori urease and heat shock protein in human gastric biopsies. Infect. Immun. 65: 1181-1188.
Eaton, K. A., C. L. Brooks, D. R. Morgan, and S. Krakowka. 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59: 2470-2475.
Eaton, K. A., D. R. Morgan, and S. Krakowka. 1989. Campylobacter pylori virulence factors in gnotobiotic piglets. Infect. Immun. 57: 1119-1125.
Eaton, K. A., S. Suerbaum, and C. Josenhans. 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 65: 1962-1966.
Evans, D. J. 1995. Characterization of a Helicobacter pylori neutrophil-activating protein. Infect. Immun. 63: 2213-2220.
Geis, G. 1989. Ultrastructure and chemical analysis of Campylobacter pylori flagella. J. Clin. Microbiol. 436-441.
Geis, G. 1993. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J. Med. Microbiol. 38: 371-377.
Gerhard, M., N. Lehn, N. Neumayer, T. Boren, R. Rad, W. Schepp, S. Miehlke, M. Classen, and C. Prinz. 1999. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesion. Proc. Natl. Acad. Sci. U S A 96: 12778-12783.
Goodwin, C. S., J. A. Armstrong, and T. Chilvers. 1989. Transfer of Campylobacter pylori and Campylobacter mustelae to Helicobacter gen. Nov. and Helicobacter pylori comb. Nov., as Helicobacter mustelae comb. Nov., respectively. Int. J. System Bacteriol. 39: 397-405.
Gottwein, J. M., T. G. Blanchard, and O. S. Targoni. 2001. Systemic vaccination with the human adjuvant aluminum hydroxide induces protective type-2 cell mediated immunity against Helicobacter pylori infection of the gastric mucosa. J. Inf. Dis. 184: 308-314.
Guy, B., C. Hessler, S. Fourage, B. Rokbi, M. J. Quentin Millet. 1999. Comparison between targeted and untargeted systemic immuninization with adjuvanted urease to cure Helicobacter pylori infection in mice. Vaccine 17: 1130-1135.
Haeberle, H. A., M. Kubin, and K. B. Bamford. 1997. Differential stimulation of interleukin-12 (IL-12) and IL-10 by live and killed Helicobacter pylori in vitro and association of IL-12 production with gamma interferon-producing T cells in the human gastric mucosa. Infect. Immun. 65: 4229-4235.
Harris, P. R., H. L. Mobley, G. I. Perez-Perez, M. J. Blaser, and P. D. Smith. 1996. Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology 111: 419-425.
Higashi, H., R. Tsutsumi, S, Muto, T. Sugiyama, T. Azuma, M. Asaka, and M. Hatakeyama. 2002. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295: 683-686.
Homma, M., K. Kutsukate, T. Iino, and S. Yamaguchi. 1984. Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J. Bacteriol. 157: 100-108.
Huesca, M., S. Borgia, P. Hoffman, and C. A. Lingwood. 1996. Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization. Infect. Immun. 64: 2643-2648.
Icatlo, F. C., H. Goshima, N. Kimura, and Y. Kodama. 2000. Acid-dependent adherence of Helicobacter pylori urease to diverse polysaccharides. Gastroenterology 119: 358-367.
Ikeda, T., S. Asakura, and R. Kamiya. 1989. Total reconstitution of Salmonella flagellar filaments from hook and purified flagellin and hook-associated proteins in vitro. J. Mol. Biol. 209: 109-114.
Ilver, D., A. Arnqvist, J. Ogren, I. M. Frick, D. Kersulyte, E. T. Incecik, D. E. Berg, A. Covacci, L. Engstrand, and T. Boren. 1998. Helicobacter pylori adhesin binding fucosylated fisto-blood group antigens revealed by retagging. Science 279: 373-377.
Israel, D. A., and R. M. Peek. 2001. Review article: pathogenesis of Helicobacter pylori-induced gastric inflammation. Aliment. Pharmacol. Ther. 15: 1271-1290.
Jabri, E., M. B. Carr, R. P. Hausinger, and P. A. Karplus. 1995. The crystal structure of urease from Klebsiella aerogenes. Science 268: 998-1004.
Jenks, P. J. 1997. A flagellar-specific ATPase (FliI) is necessary for flagellar export in Helicobacter pylori. FEMS Microbiol. Lett. 152: 205-211.
Jones, A. C. 1997. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuraminyllactose-binding hemagglutinin, but is not an adhesion for AGS cells. J. Bacteriol. 179: 5643-5647.
Kim, J. S., J. H. Chang, S. I. Chung, and J. S. Yum. 1999. Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J. Bacteriol. 181: 6969-6976.
Krienitz W. 1906. über das Auftreten von Spirochaten verschiedener Form im Mageninhalt bei Carcinoma ventriculi. Dtsch. Med. Wochenschr. 28: 872.
Labigne, A., V. cussac, and P. Courcoux. 1991. Shuttle cloning and nucleotide sequence of Helicobacter pylori genes responsible for urease activity. J. Bacteriol. 173: 1920-1931.
Lee, W. K., S. H. Choi, S. G. Park, M. Y. Choe, S. A. Jeong, J. W. Park, J. Y. Song, S. C. Baik, M. J. Cho, and K. H. Rhee. 2000. Gene rearrangement in the genome of Helicobacter pylori. ( abstract ). ASM D-253
Lin, C. W., S. C. Wu, S. C. Lee, and K. S. Cheng. 2000. Genetic analysis and clinical evaluating of vacuolating cytotoxin gene A and cytotoxin-associated gene A in Taiwanese Helicobacter pylori isolates from peptic ulcer patients. Scand. J. Infect. Dis. 32: 51-57.
Lin, J. T., L. Y. Wang, J. T. Wang, T. H. Wang and C. J. Chen. 1995. Ecological study of association between Helicobacter pylori infection and gastric cancer in Taiwan. Dig. Dis. Sci. 40: 385-388.
Lupetti, P. 1996. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell. Biol. 133: 801-807.
Macnab, R. M., Flagella and motility., in Escherichia coli and Salmonella: cellular and molecular biology, in: Neidhardt, et al. (Eds.), ASM Press, Washington, D.C., 1996, pp. 123-145.
Maeda, S., K. Ogura, H. Yoshiga, F. Funai, T. Ikenoue, N. Kato, Y. Shiratori, and M. Omata. 1998. Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut 42: 338-343.
Marais, A. 1999. Metabolism and genetics of Helicobacter pylori : the genome era. Microbiol. Mol. Biol. Rev. 63: 642-674.
Marczynski, G. T., and L. Shapiro. 1995. The control of asymmetric gene expression during Caulobacter cell differentiation. Arch. Microbiol. 163: 313-321.
Marshall, B. J. and J. R. Warrant. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1 : 1273-1275.
Mizushima, T., T. Sugiyama, Y. Komatsu, J. Ishizuka, M. Kato, and M. Asaka. 2001. Clinical relevance of the babA2 genotype of Helicobacter pylori in Japanese clinical isolates. J. Clin. Microbiol. 39: 2463-2465.
Mobley, H. L. T. 1996. The role of Helicobacter pylori urease in the pathogenesis of gastritis. Aliment. Pharmacol. Ther. 10: (suppl 1) 57-64.
Mobley, H. L. T. and P. A. Foxall. 1994. Helicobacter pylori urease. In: Hunt R. H. and G. N. J. Tytgat. Editors. Helicobacter pylori. Basic mechanisms to clinical cure. Dordrecht: Kluwer Academic Publishers. P41-58.
Mobley, H. L. T., M. J. Cortesia, and L. E. Rosenthal. 1998. Characterization of urease from Campylobacter pylori. J. Clin. Microbiol. 26: 831-836.
Mobley, H. L. T., M. D. Island, and R. P. Hausinger. 1995. Molecular biology of microbial urease. Microbiol. Rev. 59: 451-480.
Mohammadi, M., J. Nedrud, R. Redline, N. Lycke, and S. Czinn. Murine CD4 T cell responses to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology 113:1848-1857.
Mohammadi, M., S. Czinn, and R. Redline. 1996. Helicobacter-specific cell-mediated immune responses display a predominant Th1 phenotype and promote a delayed-type hypersensitivity response in the stomach of mice. J. Immunol. 156: 4729-4738.
Montecucco, C., and R. Rappuoli. 2001. Living dangerously: how Helicobacter pylori survives in the human stomach. Nature Rev. Mol. Cell Biol. 2: 457-466.
Montemurro, P. 2001. HP-NAP of Helicobacter pylori alters the coagulation-fibrinolysis balance of human blood mononuclear cells by stimulating the expression of tissue factor and PAI-II. J. Infect. Dis. 183: 1055-1062.
Nedrud, J. G. 2001. Helicobacter pylori vaccines: lessons from small animal models. Scand. J. Immunol. 53: 429-436.
Nomura, A., G. N. Stemmermann, P. H. Chyou, G. I. Perez-Perez, and M. J. Blaser. 1994. Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann. Intern. Med. 120: 977-981.
O′Toole, P. W., M. C. Lane, and S. Porwollik. 2000. Helicobacter pylori motility. Micro. Infect. 2: 1207-1214.
O′Toole, P. W., M. Kostrzynska, and T. J. Trust. 1994. Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Mol. Microbiol. 14: 691-703.
Odenbrait, S., J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 1497-1500.
Odenbreit, S., M. Till, D. Hofreuter, G. Faller, and R. Haas. 1999. Genetic and functional characterization of the alpAB gene locus essential for the adhesion of Helicobacter pylori to human gastric tissue. Mol. Microbiol. 31: 1537-1548.
Ott, G., T. Katzenberger, and A. Greiner. 1997. The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin’s lymphoma of the mucosa-associated lymphoid tissue (MALT-) type. Cancer Res. 57: 3944-3948.
Pakodi, F., O. M. Abdel-Salam, and A. Debreceni. 2000. Helicobacter pylori: one bacterium and a broad spectrum of human disease! An overview. J. Physiol. Paris. 94: 139-152.
Pan, Z. J., R. W. M. van der Hulst, M. Feller, S. D. Xiao, G. N. J. Tytgat, J. Dankert, and A. van der Ende. 1997. Equally high prevalences of infection with cagA-positive gastritis-associated dyspepsia. J. Clin. Microbiol. 35: 1344-1347.
Pappo, J., D. Torrey, L. Castriotta, A. Savinainen, Z. Kabok, and A. Ibraghimov. 1999. Helicobacter pylori infection in immunized mice lacking major histocompatibility complex class I and class II functions. Infec. Immun. 67: 337-341.
Peck, B., M. Ortkamp, K. D. Diehi, E. Hundt, and B. Knapp. 1999. Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res. 27: 3325-3333.
Peek, R. M., G. C. Miller, K. T. Tham, G. I. Preez-Perez, X. Zhzo, J. C. Atherton, and M. J. Blaser. 1995. Heightened inflammatory response and cytokine expression in vitro to cagA+ Helicobacter pylori strains. Lab. Invest. 71: 760-770.
Peek, R. M., Jr, S. F. Moss, and K. T. Tham. 1997. Helicobacter pylori cagA+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. J. Natl. Cancer. Inst. 89: 863-868.
Phadnis, S. H., M. H. Parlow, M. Levy, D. Ilver, C. M. Caulkins, J. B. Conners, and B. E. Dunn. 1996. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64: 905-912.
Price A. B. 1999. Classification of gastritis-yesterday, today, and tomorrow. Verh. Dtsch. Ges. Pathol. 83: 52-55
Prinz, C., M. Schoniger, R. Rad, I. Becker, E. Keiditsch, S. Wagenpfeil, M. Classen, T. Rosch, W. Schepp, and M. Gerhard. 2001. Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesion during chronic gastric inflammation. Cancer Res. 61: 1903-1909.
Rad, R., M. Gerhard, R. Lang, M. Schoniger, T. Rosch, W. Schepp, I. Becker, H. Wagner, and C. Prinz. 2002. The Helicobacter pylori blood group antigen-binding adhesin facilitates bacterial colonization and augments a nonspecific immune response. J. Immunol. 168: 3033-3041.
Romaniuk, P. J. 1987. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J. Bacteriol. 169: 2137-2141
Rudi, J., D. Kuck, and S. Strand. 1998. Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J. Clin. Invest. 102: 1506-1514.
Satin, B. 2000. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med. 191: 1467-1476.
Savio, A., G. Franzin, A. C. Wotherspoon, G. Zamboni, R. Negrini, F. Buffoli, T. C. Diss, L. Pan, and P.G. Isaacson. 1996. Diagnostic and post-treatment follow-up of Helicobacter pylori-positive gastric lymphoma of mucosa-associated lymphoid tissue: histology, polymerase chain reaction or both. Blood 87:1255-1260.
Sawai, N., M. Kita, and T. Kodama. 1999. Role of gamma interferon in Helicobacter pylori-induced gastric inflammatory responses in a mouse model. Infect. Immunol. 67: 279-285.
Schmidt, W., and R. Hass. 1994. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 12: 307-319.
Schmitz, A., C. Josenhans, and S. Suerbaum. 1997. Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes. J. Bacteriol. 179: 987-997.
Segal, E. D., J. Cha, J. Lo, S. Falkow, and L. S. Tompkins. 1999. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth change by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 96: 14559-14564.
Selbach, M., S. Moese, C. R. Hauck, T. F. Meyer, and S. Backert. 2002. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Bio. Chem. 277:6775-6778.
Sheu, B. S., H. B. Yang, J. J. Wu, A. H. Huang, X. Z. Lin, and I. J. Su. 1999. Development of Helicobacter pylori infection model in BALB/c mice with domestic cagA -positive and -negative strains in Taiwan. Dig. Dis. Sci. 44: 868-875.
Sheu, S. M., B. S. Sheu, H. B. Yang, C. Li, T. C. Chu, and J. J. Wu. 2002. Presence of iceA1 but not cagA, cagC, cagE, cagF, cagN, cagT, or orf13 genes of Helicobacter pylori is associated with more severe gastric inflammation in Taiwanese. J. Formos. Med. Assoc. 101: 18-23.
Shiesh, S. C., B. S. Sheu, H. B. Yang, H. J. Tsao and X. Z. Lin. 2000. Serologic response to lower-molecular-weight proteins of H. pylori is related to clinical outcome of H. pylori infection in Taiwan. Dig. Dis. Sci. 45: 781-788.
Smythies, L. E., K. B. Waites, and J. R. Lindsey. 2000. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. J. Immunol. 165: 1022-1029.
Sommi, P. 1996. Significance of ammonia in the genesis of gastric epithelial lesions induced by Helicobacter pylori: an in vitro study with different bacterial strains and urease concentrations. Digestion 57: 299-304.
Stein, M., R. Rappuoli, and A. Covacci. 2000. A tyrosine phosphorylation of Helicobacter pylori CagA after cag-driven host translocation. Proc. Natl. Acad. Sci. USA 97: 1263-1268.
Stolte, M., E. Bayerdorffer, A. Morgner, B. Alpen, T. Wundisch, C. Thiede, and A. Neubauer. 2002. Helicobacter and gastric MALT lymphoma. Gut 50 (suppl III): iii 19-24.
Suerbaum, S., C. Josenhans, and A. Labigne. 1993. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J. Bacteriol. 175: 3278-3288.
Sutton, P. 2001. Helicobacter pylori vaccines and mechanisms of effective immunity: is mucus the key? Immunol. Cell Biol. 79: 67-73.
Sutton, P., J. Wilson, T. Kosaka, I. Wolowczuk, and A. Lee. 2000. Therapeutic immunization against Helicobacter pylori infection in the absent of antibodies. Immunol. Cell Biol. 78: 28-30.
Telford, J. L., A. Covacci, R. Rappuoli, and P. Ghiara. 1997. Immunology of Helicobacter pylori infection. Curr. Opin. Immun. 9: 498-503.
Thiede, C., A. Morgner, B. Alpen, T. Wundisch, J. Herrmann, M. Ritter, G. Ehninger, M. Stolte, E. Bayerdorffer, and A. Neubauer. 1997. What role does Helicobacter pylori eradication play in gastric MALT and gastric MALT lymphoma ? Gastroenterology 113 (Suppl 6):S61-64.
Thiede, C., T. Wundisch, and B Alpen. 2001. Long-term persistence of monoclonal B cells after cure of Helicobacter pylori infection and complete histologic remission in gastric mucosa-associated lymphoid tissue B-cell lymphoma. J. Clin. Oncol. 19:1600-1609.
Tomb, J. F., O. White, A. R. Kerlavage, R. A. Clayton, and G. C. Sutton. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 338: 539-547.
Vaux, D. L., and A. StrasSeries. 1996. The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA 93: 2239-2244.
Wan, J. H., K. J. Trainor, M. J. Brisco, and A. A. Morley. 1990. Monoclonanity in B cell lymphoma detected in paraffin wax embedded sections using the polymerase chain reaction. J. Clin. Pathol. 43: 888-890.
Wang, H. J., C. H. Kuo, A. M. Yeh, C. L. Chang, and W. C. Wang. 1998. Vacuolating toxin production in clinical isolates of Helicobacter pylori with different vacA genotypes. J. Infect. Dis. 178: 207-212.
Wang, W. C., H. J. Wang, and C. H. Kuo. 2001. Two distinctive cell binding pattern by vacuolating toxin fused with glutathione S-transferase: one high-affinity m1-specific binding and the other lower-affinity binding for variant m forms. Biochem. 40: 11887-11896.
Weeks, D. L., S. Eskandari, D. R. Scott, and G. Sachs. 2000. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287: 482-485.
Wong, B. C., Y. Yin, D. E. Berg, H. H. Xia, J. Z. Zhang, W. H. Wang, W. M. Wong, X. R. Huang, V. S. Tang, and S. K. Lam. 2001. Distribution of distinct vacA, cagA and iceA alleles in Helicobacter pylori in Hong Kong. Helicobacter 6: 317-324.
Yahiro, K. 1999. Activation of Helicobacter pylori VacA toxin by alkaline or acid conditions increases its binding to a 250-kDa receptor protein –tyrosine phosphatase beta. J. Cell. Biol. 274: 36693-36699.
Yamaguchi, H., T. Osaki, N. Kurihara, H. Taguchi, T. Hanawa, T. Yamamoto, and S. Kamiya. 1997. Heat-shock protein 60 homologue of Helicobacter pylori is associated with adhesion of H. pylori to human gastric epithelial cells. J. Med. Microbiol. 46: 825-831.
Yoshida, N. 1993. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology. 105: 1431-1440.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊