|
參考資料
[1] http://www.doh.gov.tw/90-info/info-5.htm [2] http://www.doh.gov.tw/newdoh/90-org/org-10/org10-2/89/org10-89.htm [3] 季瑋珠, 張金堅, “本土醫學資料庫之建立及衛生政策上之應用”, 1993 [4] http://www.fmmu.edu.cn/web/hepa/text/brestca.htm [5] R.H. Gold, L.W. Bassett, “X-ray mammography : History, controversy, and state of art in mammography, thermography and ultrasound in breast cancer detection”, Grune&Straton, 1982. [6] “The national breast a and cervical cancer early detection program”, CDC U.S. Department of health and human services, 1997. [7] 陳啟明, 雷永耀, 彭芳谷, “乳房疾病”, 九州圖書文物有限公司, 1982 [8] L.W. Bassett, “Mammographic analysis of calcifications”, Radiological Clinics of North America, Vol. 30, No.1, pp. 93-105, 1992 [9] S.M. Lai, X. Li, W.F. Bischof, “On techniques for detecting circumscribed masses in mammograms”, IEEE Trans. Med. Image, Vol. 8, pp. 377-386, 1990 [10] D. Brzakovic, X.M. Luo, P. Brzakovic, “An approach to automated detection of tumors in mammography”, IEEE Trans. Med. Image, Vol. 9, pp.233-241, 1990 [11] H. Kobatake, Y. Yoshinaga, M. Murakai, “Automatic detection of malignant tumors mammogram”, IEEE Trans. Med. Image, Vol. 3, pp. 407-410, 1994. [12] F.F. Yin, M.L. Giger, K. Doi, C.D. Metz, C.J. Vyborny, R.A. Schmidt, “Computerized detection of masses in digital mammograms : Analysis of bilateral subtraction images”, Med. Phys. Vol. 18, pp. 955-963, 1991. [13] W.P. Kegelmeyer, J.M. Prunedu, P.D. Bourland, A. Hillis, M.W. Riggs. M.L. Nipper, “Computer-aided mammographic screening for speculated lesions”, Radiol. Vol. 191, pp. 331-337, 1994. [14] H.P. Chan, D. Wei, M.A. Helvie, B. Sahiner, D.D. Adler, M.M. Goodsitt, N. Petrick, “Computer-aided classification of mammographic masses and normal tissue : Linear discriminant analysis in texture feature space”, Phys. Med. Biol. Vol. 40, pp. 857-876, 1995. [15] I. Christoyianni, E. Dermatas, G. Kokkinakis, “Neural classification of abnormals tissue in digital mammography using statistical features of the texture”, Electronics, Circuits and Systems, 1999. Proceedings of ICECS '99. The 6th IEEE International Conference on , Volume: 1 , 1999. [16] I. Christoyianni, E. Dermatas, G. Kokkinakis, “Fast detection of masses in computer-aided mammography” IEEE Signal Processing Magazine, pp. 54-64. January 2000. [17] B. Aldrich, M. Desai, “Application of spatial grey level dependence methods to digitized mammograms”, IEEE, 1994. [18] H.P. Chan, “Image feature analysis and computer-aided diagnosis in digital radiology : Automated detection of microcalcifications in mammography”, Med. Phy., Vol. 14, No. 4, pp. 538-548, Jul/Aug 1987. [19] A.P. Dhawan, “Enhancement of mammographic features by optimal adaptive neighborhood image processing”, IEEE Trans. Medical Image, Vol. M2-5, No.5, March 1986. [20] R.M. Haralick, K. Shanmugam, I. Dinstein, “Textural features for image classification”, IEEE Transaction on system, mam, and cybernetics, Vol. SMC-3, No. 6, November 1973. [21] D.C. He, L. Wang, “Texture features based on texture spectrum”,Pattern Recognition, Vol.24, No.5, pp.391-399, 1991. [22] D.C. He, L. Wang, J. Guibert, “Texture discrimination based on an optimal utilization of texture features”, Pattern Recognition, Vol. 24, No. 2, pp. 141-146, 1988. [23] M.H. Horng, Y.N. Sun, X.Z. Lin, “Texture feature coding method for classification of liver sonography” Computerized Medical Imaging and Graphics 26, pp 33-42, 2002. [24] http://www.wiau.man.ac.uk/services/MIAS/MIASweb.html [25] D.C. He, L. Wan, “Texture feature extraction from texture spectrum”, IEEE, pp.1987-1990. [26] P.C. Chung “An algorithm for detection and segmentation of clustered microcalcifications on mammograms,” 2nd Medical Engineering Week of the World. May 26-30, Taipei, Taiwan, ROC. pp. 102, 1996. [27] C.M. Wu, Y.C. Chen. K.S. Hsieh, “Texture feature for classification of ultrasonic liver images”, IEEE Tans. Med. Imaging, Vol. 11, No. 2, pp. 141-152, 1992. [28] L. Wang, D.C. He, “A new statistical approach for texture analysis”, Photogrammetric Engng Remote Sensing 56, pp. 61-66, 1990 [29] J.M. Coggins, A.K. Jain, “A spatial filtering approach to texture analysis”, Pattern Recognition Lett., No. 3, 195-203, 1985. [30] J.W.V. Miller, J.B. Farson, Y. Shin, “Spatially invariant image sequences” IEEE Trans, Image Processing, Vol. 1, pp.148-161, Apr. 1992. [31] N.K. Pal, “Entropic thresholding” Signal processing. 16, 97-108, 1989 [32] G. Cardenosa, “Breast imaging companion” Lippincott-Raven, New York, 1997 [33] D.F. Specht, ”Probabilistic neural networks and the polynomial Adaline as complementary techniques for classification” IEEE Trans. On Neural Networks , 111-121. [34] D.F. Specht, “Probabilistic neural networks ,” Neural Networks ,3,109-118, 1990.
|