|
參考文獻 [1]Bo-re Bai and Berlin Chen “Syllable-based Chinese Text/Spoken Document Retrieval Using Text/Spoken Queries”, Pattern Recognition and Artificial Intelligence, Vol. 14, No. 5, 603-616, 2000 [2]J. Bellegarda, “Exploiting latent semantic information in statistical language modeling.” Proceedings of the IEEE, pp.1279-1296, 2000. [3]Berlin Chen “Speech Information Retrieval for Mandarin Chinese Syllable-based Index Feature, Statistical Retrieval Models and Improved Approach”, Ph.D. Dissertation [4]Berlin Chen, Hsin-min Wang, and Lin-shan Lee, "An HMM/N-gram-based Linguistic Approach for Mandarin Spoken Document Retrieval," in Proc. The 7th EUROSPEECH Conference on Speech Communication and Technology (EUROSPEECH), Aalborg-Demark, Sept. 2001. [5]Berlin Chen and Hsin-min Wang, “Improved Spoken Document retrieval by Exploring Extra Acoustic and Linguistic Cues”, EUROSPEECH ,pp 299-302, 2001 [6]Berlin Chen, Hsin-min Wang, and Lin-shan Lee, “Retrieval of Broadcast News Speech in Mandarin Chinese Collected in Taiwan Using Syllable-Level Statistical Characteristics,” in Proc. Int. Conf. On Acoustic, Speech, Signal Processing, 2000. [7]Berlin Chen, Hsin-min Wang, and Lin-shan Lee, "Retrieval of Mandarin Broadcast News using Spoken Queries," in Proc. International Conference on Spoken Language Processing (ICSLP), Beijing, Oct. 2000. [8]Croft, W.B., and Turtle, H.R. Text Retrieval and Inference. In Text-Based Intelligent Systems, edited by Paul S. Jacob, pp.127-155, Lawrence Erlbaum Associates, Publishers, 1992. [9]A.P. Dempster, N.M. Laird, and D.B Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J.Roy. Stat. Soc., 39(1), pp.1-38, 1977. [10]M. Federico, Bayesian Estimation Methods for N-gram Language Model Adaptation, Proc. ICSLP, pp. 240-243, Philadelphia, 1996. [11]Frakes, W.B., and Baeza-Yates, R.(editors). Information Retrieval : Data Structure and Algorithms. Englewood Cliffs, New Jersey: Prentice Hall, 1992. [12]C. Ng, R. Wilkinson & J. Zobel, “Experiments in spoken document retrieval using phoneme n-grams” Speech Communication, Vol 32, No. 1-2, Sept. 2000, pp. 61-77 [13]J.-T. Chien and H.-Y. Chen, “Association Rule based Language Models for Discovering Long Distance Dependency in Chinese”, Proc. of Research on Computational Linguistics Conference XIV(ROCLING XIV), pp.43-63, Tainan-Taiwan, August 2001. (in Chinese) [14]David R.H. Miller, T. Leek, and R. Schwartz, “A Hidden Markov Model Information Retrieval System ”, Proc. ACM SIGIR , pp.214-221,1999. [15]J.L. Gauvain, L. Lamel, Y. de Kercadio, and G. Adda. Transcription and Indexation of Broadcast Data. In Proceedings of ICASSP, pages 1663-1666, Istanbul, Jun 2000. [16]D. Harman, Overview of the Fourth Text Retrieval Conference (TREC-4). 1995. Available at http://trec.nist.gov/pubs/trec4/overvies.ps. [17]Hsin-min Wang “Experiments in syllable-based retrieval of broadcast news speech in Mandarin Chinese”, Speech Communication 32, pp.49-60, 2000 [18]Hsin-min Wang “Mandarin spoken document retrieval based on syllable lattice matching”, Pattern Recognition Letters 21, pp.615-624, 2000 [19]Hsin-min Wang, H. Meng, P. Schone, B. Chen and W. K. Lo, “Multi-Scale Audio Indexing for Translingual Spoken Document Retrieval,” in proc. Int. Conf. On Acoustic, Speech, Signal Processing, 2001. [20]Iyer, R.M.; Ostendorf, M. “Modeling long distance dependence in language: topic mixtures versus dynamic cache models.” Speech and Audio Processing, IEEE Transactions on , Vol.7 Issue: 1 , Jan. 1999. [21] M.-P. Jay and W Bruce Croft, “A Language Modeling Approach to Information Retrieval”, Proc. ACM SIGIR , pp.275-281, 1998 . [22]Jelinek Frederick. Statistical Methods for Speech Recognition. The MIT Press 1999. [23]P. Jourlin, S. E. Jonson, K. Sparck Jones, P. C. Woodland, “Spoken Document Representations for Probabilistic Retrieval,” Speech Communication ,32, pp. 21-36, 2000. [24]J. Makhoul, F. Kubala, R. Leek, D. Lui, L. Nguqen, R. Schwartz and A. Srivastava, “Speech and language technologies for audio indexing and retrieval”, Pro of the IEEE Vol.88, No.8, August 2000. [25]C. D. Manning, H. Schutze, “Foundations of statistical natural language processing”, Massachusetts Institute of Technology pp.315-407, 1999 [26]Mario A.T. Figueiredo, Anil K. Jain, “Unsupervised Learning of Finite Mixture Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.3, March 2002. [27]M. Meteer and J. R. Rohlicek, “Statistical language modeling combining N -gram and context free grammars” , in Proc. Int. Conf. Acoustics, Speech, Signal Processing, vol. II, pp. 37–40 , 1993. [28]Mittendorf, E. & Schuble, P. (1996): Document and Passage Retrieval Based on Hidden Markov Models. Proceedings of SIGIR96, p. 318 - 327. [29]K. Ng, “Information fusion for Spoken Document Retrieval,” in Proc. Int. Conf. On acoustic, Speech, Signal Processing, 2000 [30]L. Rabiner and B.H. Juang, “Funadamental of Speech Recognition”, Prentice Hall, pp.321-387, 1993 [31]S. Renals, D. Abberley, D. Kirby, and T. Robinson, “Indexing and Retrieval of Broadcast news,” Speech Communication, 32, pp.5-20, 2000. [32]B.-Y. Ricardo and Berthier Ribeiro-Neto , Modern Information Retrieval , Addison-Wesley Longman, May 1999 [33]R. Rosenfeld, “Two decades of Statistical Language Modeling: Where Do We Go From Here?” Proc of the IEEE, 88:1270-1278, August 2000. [34]Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. The ACADEMIC Press. Pp39-39, 1999. [35]M. Siegler and M. Witbrock, “Improving the suitability of imperfect transcriptions for information retrieval from spoken documents,” ICASSP 1999. [36]R. Silipo and F. Crestani, “Prosodic Stress and Topic Detection in Spoken Sentences,” Technical Report, International Computer Science Institute, Berkeley, 2000. [37]F. Song and W.B. Croft, “A General Language Model for Information Retrieval”, Proc. CIKM , pp.93-96, 1999. [38]F. Walls, H. Jin, S. Sista, and R. Schwartz. “Probabilistic models for topic detection and tracking,” In IEEE International Conference On Acoustics, Speech and Signal Processing, 1999. [39]G. Ng, R. Wilkinson, and j. Zobel, “Experiments in spoken Document Retrieval Using Phoneme N-grams,“ Speech Communication, 32, pp. 61-77, 2000. [40]M. Witbrock and A. Hauptmann, “Using Words and Phonetic Strings for Efficient Information Retrieval from Imperfectly Transcribed Spoken Documents,” in Proc. ACM Digital Libraries Conference, pp.30-35, 1997. [41]I. H. Witten and T. C. Bell “The zero-frequency problem : Estimating the probabilities of novel events in adaptive text compression.”, IEEE Transactions on Information Theory , Vol.37, pp.1085-1094, 1991 [42]S. Young, “Probabilistic methods in spoken dialogue systems", Proc of the Royal Society, London, Sept. 1999. [43]CKIP, http://godel.iis.sinica.edu.tw/, 中央究院資訊科學研究所詞庫小組。 [44]鉅亨網, http://www.cnyes.com/ [45]民視即時新聞, http://www.can.com.tw [46]聯合新聞網,http://udnnews.com/NEWS [47]ETtoday, http://www.ettoday.com/ [48]中時電子報,http://news.chinatimes.com/ [49]雅虎新聞, http://news.yahoo.com.tw
|