(3.238.186.43) 您好!臺灣時間:2021/02/25 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王能中
研究生(外文):Neng-Chung Wang
論文名稱:在蟲洞繞路星狀圖及不規則網路上有效率的多點傳輸策略
論文名稱(外文):Efficient Multicasting Strategies on Wormhole-Routed Star Graph and Irregular Networks
指導教授:陳宗禧陳宗禧引用關係朱治平朱治平引用關係
指導教授(外文):Tzung-Shi ChenChih-Ping Chu
學位類別:博士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:121
中文關鍵詞:無死結不規則網路多點傳輸星狀圖網路蟲洞繞路
外文關鍵詞:deadlock-freeirregular networksmulticaststar graph networkswormhole routing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
平行處理技術因可支援高效能的計算而顯得日益重要。因此以網路連結的大量平行處理機系統(Massively Parallel Processing Systems),在以高速計算為主的應用上對平行處理技術的需求也日益增加。多點傳輸(Multicast)是連結網路的一種重要的聚集通訊操作(Collective Communication Operation),目前被廣泛的應用在多電腦系統中,其運作係將同一份訊息由來源節點傳送至其他任意多個目的節點。
星狀圖網路(Star Graph Network)被認為比普受歡迎的超立方體網路(Hypercube Network)更具潛力。其主要原因是星狀圖網路具有對稱(Symmetric)與階層的(Hierarchical)結構,且與超立方體網路相較具較低的分支度(Degree)及較小的直徑(Diameter)。工作站網路(Networks of Workstations),由於與大量平行處理機系統相較價格較為便宜,已逐漸顯現其重要性。工作站網路具有優越的特性,包括:價格低、頻寬高、擴充性好、彈性佳。工作站網路係使用不規則交換器為基礎(Irregular Switch-Based Network)的架構用以支援高效率平行計算。
在本論文中,我們的研究係針對多點傳輸問題在星狀圖網路上提出三種有效率的解決方案,及在不規則網路上提出二種有效率的解決方案。
在多點傳輸之星狀圖網路中,所提出之三個傳輸策略分別描述如下。在第一個傳輸策略中,我們首先提出一個“雙漢米爾頓路徑的繞路模式(Dual-Hamiltonian-Path-Based Routing Model)”。此模式採用二個虛擬通道及一個網路切割策略。接著,基於此模式我們提出三個有效率的多點傳輸方法:“網路選擇為基礎繞路(Network-Selection-Based Routing)”、“啟發式網路選擇為基礎(Heuristic-Network-Selection-Based Routing)”、及“二階段啟發式網路選擇為基礎繞路(Two-Phase Heuristic-Network-Selection-Based Routing)”。所提出的三個方法已被證實均不會產生死結。實驗結果顯示所提出的繞路方法優於以單點傳輸為基礎(Unicast-Based)、以漢米爾頓路徑(Hamiltonian-Path)、及以單漢米爾頓路徑為基礎雙路徑(Single-Hamiltonian-Path-Based Dual-Path)的繞路方法。在第二個傳輸策略中,我們提出一個“多路徑的繞路模式(Multipath-Based Routing Model)”,並且提出二個有效率的多點傳輸方法:“簡易多路徑繞路(Simple Multipath Routing)”及“二階段多路徑繞路(Two-Phase Multipath Routing)”。所提出的二個方法已被證實均不會產生死結。實驗結果顯示在小訊息啟動延遲時間之短型或中型訊息長度中,所提出的方法優於先前的方法。在第三個傳輸策略中,我們提出一個有效率的“樹狀為基礎之多點傳輸繞路方法(Tree-Based Multicast Routing Scheme)”。此方法我們必須先在星狀圖網路中內嵌漢米爾頓路徑(Embedded with Hamiltonian Path)。在樹狀為基礎之多點傳輸繞路中,訊息的傳輸係使用多目的路徑傳輸(Multidestination Worm),此時路由器可同時切割並複製資料至一個以上的輸出埠(Output Port)。在所提出的繞路方法中為避免死結現象的產生,路由器必須配置輸入緩衝為基礎(Input-Buffer-Based)之非同步複製機制(Asynchronous Replication Mechanism)。實驗結果證實所提出的方法優於先前的研究。
在多點傳輸之不規則交換器網路中,二個有效率的多點傳輸策略被提出,此二個多點傳輸策略分別為“上下雙樹為基礎繞路(Up-Down Dual-Tree-Based Routing) ”及“左右雙樹為基礎繞路(Left-Right Dual-Tree-Based Routing)”。針對每一個傳輸策略,我們在蟲洞繞路不規則交換器網路上建構一個雙樹的架構做雙重的多點傳輸以降低傳輸延遲時間。相較於樹狀為基礎繞路(Tree-Based Routing)則是採用單樹的架構來做資料傳輸。所提出之雙樹結構是建立於網路切割的觀念,並且證實基於此結構的多點傳輸方法不會產生死結。在上下雙樹為基礎(Up-Down Dual-Tree-Based)的多點傳輸策略中,一個有效率的“上下雙樹繞路演算法(Up-Down Dual-Tree-Based Routing Algorithm)”被提出。此方法採用“最佳階度(Optimum Level-Based)”的目的交換器切割策略。實驗結果顯示所提出的最佳階度上下雙樹多點傳輸法能夠改進以單樹為基礎的多點傳輸法。在“左右雙樹為基礎(Left-Right Dual-Tree-Based)”的多點傳輸策略中,一個有效率的多左右雙樹繞路演算法(Left-Right Dual-Tree-Based Routing Algorithm)被提出。此方法分別採用三種目的交換器切割策略:“來源交換器切割(Source-Switch-Based Partition)”、“目的交換器切割(Destination-Switch-Based Partition)”、及“所有交換器切割(All-Switches-Based Partition)”。實驗結果顯示所提出的左右雙樹多點傳輸法能夠改進以單樹為基礎的多點傳輸法。在所提出的方法中,以目的交換器雙樹多點傳輸法效能最佳。
Parallel processing technique has become important because it supports high-performance computation. So, massively parallel processing systems (MPPs) connected by a variety of interconnection networks are increasingly demanded for high-performance computation-based applications. Multicast is an important collective communication operation on multicomputer systems, in which the same message is delivered from a source node to an arbitrary number of destination nodes.

The star graph [2, 3] interconnection network has been recognized as an attractive alternative to the popular hypercube network. This may account for that star graph is with symmetric and hierarchical structure, lower degree and smaller diameter as opposed to the hypercube. Network of workstations (NOWs) is emerging as an inexpensive alternative to massively parallel processing systems (MPPs). NOWs support the superior properties of cost-effectiveness, high bandwidth, scalability, and flexibility. The switch-based networks are typically built with irregular topologies. This makes the design of routing algorithms on such systems quite complicated. The irregular switch-based networks are proposed to build NOWs for high performance parallel computing.

In this dissertation, we focus the multicasting on three efficient solutions of star graph networks and two efficient solutions of irregular switch-based networks.

For multicasting on star graph networks, the proposed three strategies are described as follows. In the first routing strategy, we first address a dual-hamiltonian-path-based (DHPB) routing model with two virtual channels based on two Hamiltonian paths and a network partitioning strategy for wormhole star graph networks. Then, based on the model we propose three efficient multicast routing schemes: network-selection-based (NSB) routing, heuristic-network-selection-based (HNSB) routing, and two-phase heuristic-network-selection-based (TP-HNSB) routing. All of the three proposed schemes are proved deadlock-free. Experimental results show that the proposed dual-hamiltonian-path-based routing schemes are superior to the unicast-based, the hamiltonian-path, and the single-hamiltonian-path-based (SHPB) dual-path routing schemes. In the second routing strategy, we address a multipath-based routing model and propose two efficient multipath multicast routing schemes, simple multipath routing and two-phase multipath routing, for wormhole star graph networks. Both proposed schemes are proved deadlock-free. Experimental results show for small message startup latencies with short and medium messages the performance of the proposed multipath-based routing schemes is evidently superior to that of previous schemes. In the third routing strategy, we propose an efficient tree-based multicast routing scheme for wormhole-routed star graph networks embedded with hamiltonian path. In tree-based routing, the message is delivered to the destination subset with two multidestination worms that split at some routers and replicate the data on more than one output port. In the proposed scheme, for deadlock-free routing, the router is with the input-buffer-based asynchronous replication mechanism. Experimental results present the performance of the proposed tree-based routing scheme is better than that of the previous approaches.

For multicasting on irregular switch-based networks, two efficient multicasting strategies, up-down dual-tree-based routing and left-right dual-tree-based routing, are proposed. For each routing strategy, a dual-tree structure is established from wormhole-routed irregular switch-based network for dual multicasting to reduce transmission latency; while in the conventional tree-based scheme a single-tree structure for multicasting is used. The proposed dual-tree structure established on basis of network partitioning, the multicasting based on this structure is deadlock-free. In up-down dual-tree-based routing strategy, an efficient up-down dual-tree-based routing algorithm with optimum level-based partition strategy is proposed. The experimental results show that the performance based on usual tree-based multicasting scheme can be improved by the up-down dual-tree-based routing scheme with optimum level-based destination-switch partition strategy. In left-right dual-tree-based routing strategy, an efficient left-right dual-tree-based routing algorithm with three destination-switch partition strategies: source-switch-based partition, destination-switch-based partition, and all-switches-based partition, is proposed. The experimental results show that the left-right dual-tree-based routing scheme outperforms the usual tree-based multicasting scheme. The left-right dual-tree-based routing scheme with destination-switch-based partition strategy is shown to be the best for all situations.
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . 1
1.1.1 Target Networks . . . . . . . . . . . 1
1.1.2 Message Routing . . . . . . . . . . . 2
1.2 Related Works . . . . . . . . . . . . . 3
1.2.1 Multicasting on Direct Networks . . . . . . . . . . . . . . . . . 3
1.2.2 Multicasting on Irregular Switch-Based Networks . . . . . . . . . . . . . . 4
1.3 Achievements and Main Contributions . . . . . . . . . . . . . . . 5
1.3.1 Proposed Multicasting Strategies of Star Graph Networks . . . . . . . . . 5
1.3.2 Proposed Multicasting Strategies of Irregular Switch-Based Networks . . 6
1.4 Organizations of the Dissertation . . . . . . . . . . . . . . . 8
2 Background 9
2.1 Direct Networks . . . . . . . . . . . . 9
2.2 Indirect Networks . . . . . . . . . . . 11
2.3 Switching Techniques . . . . . . . . . 13
2.3.1 Circuit Switching . . . . . . . . . . 13
2.3.2 Packet Switching (Store-and-Forward Switching) . . . . . . . . . . . . . . 14
2.3.3 Virtual Cut-Through (VCT) Switching . . . . . . . . . . . . . . . . . 14
2.3.4 Wormhole Switching (Wormhole Routing) . . . . . . . . . . . . . . . . . . 15
2.4 Message Routing . . . . . . . . . . . . 16
2.4.1 Multicast Routing . . . . . . . . . . . . . . . . . . 16
2.4.2 Communication Latency . . . . . . . . . . . . . . . . . . . 17
2.4.3 Deadlock-Free Routing . . . . . . . . . . . . . . . . . . . 18
2.5 Previous Works of Star Graph Networks . . . . . . . . .. . . . . . . . 19
2.5.1 System Model . . . . . . . . . . . . . 19
2.5.2 Path-Based Multicast Routing Model . . . . . . . . . . . . . . . . . . . . 20
2.6 Previous Works of Irregular Switch-Based Networks . . . . . . . . . . . . . . . . 24
2.6.1 Irregular Switch-Based Networks . . . . . . . . . . . . . . . . . . 24
2.6.2 Tree-Based Routing Model . . . . . . . . . . . . . . . . . . . . 25
3 Multicasting Strategies on Wormhole-Routed Star Graph Networks 29
3.1 Dual-Hamiltonian-Path-Based (DHPB) Multicasting on Wormhole-Routed Star
Graph Networks . . . . . . . . . . . . . . . . 29
3.1.1 Dual-Hamiltonian-Path-Based (DHPB) Multicast Routing Model . . . . . 30
3.1.2 Dual-Hamiltonian-Path-Based (DHPB) Dual-Path Multicast Routing Algorithms . . . . . . . . . . . . . . . . . . 32
3.1.3 Simulations and Experimental Results . . . . . . . . . . . . . . . . . . . . 45
3.2 Multipath-Based Multicasting on Wormhole-Routed Star Graph Networks . . . . 50
3.2.1 Multipath-Based Multicast Routing Model . . . . . . . . . . . . . . . . . 51
3.2.2 Multipath Multicast Routing Algorithms . . . . . . . . . . . . . . . . . . 52
3.2.3 Simulations and Experimental Results . . . . . . . . . . . . . . . . . . . . 61
3.3 Tree-Based Multicasting on Wormhole-Routed Star Graph Networks Embedded
with Hamiltonian Path . . . . . . . . . . . . . . . . . . . . . . 66
3.3.1 Tree-Based Multicast Routing . . . . . . . . . . . . . . . . . . .. . 67
3.3.2 Simulations and Experimental Results . . . . . . . . . . . . . . . . . . . . 72
4 Multicasting Strategies on Wormhole-Routed Irregular Switch-Based Networks 78
4.1 Up-Down Dual-Tree-Based Multicasting on Wormhole-Routed Irregular Switch-
Based Networks . . . . . . . . . . . . . . . . . 78
4.1.1 Up-Down Dual-Tree-Based Routing Model . . . . . . . . . . . . . . . . . 78
4.1.2 Up-Down Dual-Tree-Based Routing Algorithm . . . . . . . . . . . . . . . 83
4.1.3 Simulations and Experimental Results . . . . . . . . . . . . . . . . . . . . 88
4.1.4 Discussion . . . . . . . . . . . . . . . . 93
4.2 Left-Right Dual-Tree-Based Multicasting on Wormhole-Routed Irregular Switch-
Based Networks . . . . . . . . . . . . . . . . . 94
4.2.1 Left-Right Dual-Tree-Based Routing Model . . . . . . . . . . . . . . . . . 94
4.2.2 Left-Right Dual-Tree-Based Routing Algorithm . . . . . . . . . . . . . . . 98
4.2.3 Simulations and Experimental Results . . . . . . . . . . . . . . . . . . . . 103
4.2.4 Discussion . . . . . . . . . . . . . . . 107
5 Conclusions 108
5.1 Multicasting on Star Graph Networks . . . . . . . . . . . . .. . . . . . . 108
5.2 Multicasting on Irregular Switch-Based Networks . . . . . . . . . . . . . . . . . . 109
[1] B. Abail and C. Aykanat, 'Routing Algorithms for IBM SP1,' Lecture notes in Computer Science, Vol. 853, pp. 161-175, 1994.
[2] S.B. Akers, D. Harel, and B. Krishnamurthy, 'The Star Graph: An Attractive Alternative to the n-Cube,' Proceedings of the 1987 International Conference on Parallel Processing, pp. 393-400, August 1987.
[3] S.B. Akers and B. Krishnamurthy, 'A Group-Theoretic Model for Symmetric Interconnection Networks,' IEEE Trans. on Computers, Vol. 38, No. 4, pp. 555-565, April 1989.
[4] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N. Seizovic, and W.-K. Su, 'Myrinet -- A Gigabit-per-Second Local Area Network,' IEEE Micro, Vol. 15, No. 1, pp. 29-36, February 1995.
[5] T.-S. Chen, Y.-C. Tseng, and J.-P. Sheu, 'Balanced Spanning Trees in Complete and Incomplete Star Graphs,' IEEE Trans. on Parallel and Distributed Systems, Vol. 7, No. 7, pp. 717-723, July 1996.
[6] T.-S. Chen, C.-Y. Chang, and J.-P. Sheu, 'Efficient Multicast Communication in Multidestination Wormhole-Routed Mesh Networks,' Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications, Vol. 2, pp. 674-681, July 1998.
[7] Y.-S. Chen, J.-P. Sheu, and Y.-C. Tseng, 'Toward Optimal Ring Embedding in the Faulty Star Graph,' International Conference on Parallel and Distributed Processing Techniques and Applications, July, 1998.
[8] T.-S. Chen, N.-C. Wang, and C.-P. Chu, 'Multicast Communication in Wormhole-Routed Star Graph Interconnection Networks,' Parallel Computing, Vol. 26, No. 11, pp. 1459-1490, October 2000.
[9] L.D. Coster, N. Dewulf, and C.T. Ho, 'Efficient Multi-Packet Multicast Algorithms on Meshes with Wormhole and Dimension-Ordered Routing,' Proceedings of International Conference on Parallel Processing, Vol. III, pp. 137-141, August 1995.
[10] Cray Research Inc., CRAY T3E Scalable Parallel Processing System, 1995.
[11] W.J. Dally and C.L. Seitz, 'The Torus Routing Chip,' Journal of Parallel and Distributed Computing, Vol. 1, No. 3, pp. 187-196, 1986.
[12] W.J. Dally and C.L. Seitz, 'Deadlock-Free Message Routing in Multiprocessor Interconnection Networks,' IEEE Trans. on Computers, Vol. 36, No. 5, pp. 547-553, May 1987.
[13] K. Day, and A. Tripathi, 'A Comparative Study of Topological Properties of Hypercubes and Star Graphs,' IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 1, pp. 31-38, January 1994.
[14] J. Duato, 'A Necessary and Sufficient Condition for Deadlock-Free Adaptive Routing in Wormhole Networks,' IEEE Trans. on Parallel and Distributed Systems, Vol. 6, No. 10, pp. 1055-1067, October 1995.
[15] J. Duato, S. Yalamanchili, and L.M. Ni, Interconnection Networks: An Engineering Approach, Computer Society Press, 1997.
[16] B. Duzett and Ron Buck, 'An Overview of the nCUBE 3 Supercomputer,' Symposium on Frontiers of Massively Parallel Computation, pp. 458-464, 1992.
[17] K.-P. Fan and C.-T. King, 'Efficient Multicast on Wormhole Switch-Based Irregular Networks of Workstations and Processor Clusters,' Proceedings of the 11th International Symposium on High Performance Computing (HPCS'97), July 1997.
[18] K.-P. Fan and C.-T. King, 'Turn Grouping for Multicast in Wormhole-Routed Mesh Networks Supporting the Turn Model,' The Journal of Supercomputing, Vol. 16, No. 3, pp. 237-260, July 2000.
[19] S.A. Felperin et al., 'Routing Techniques for Massively Parallel Communication,' Proceedings of IEEE, Vol. 79, No. 4, pp. 488-503, April 1991.
[20] C.J. Glass and L.M. Ni, 'The Turn Model for Adaptive Routing,' Proceedings of International Symposium Computer Architecture, pp. 278-287, 1992.
[21] R. Horst, 'ServerNet Deadlock Avoidance and Fractahedral Topologies,' Proceedings of the 10th International Parallel Processing Symposium (IPPS'96), pp. 274-280, Honolulu, Hawaii, April 1996.
[22] Intel Corporation, Intel iPSC/1 Reference Manual, Beaverton OR, 1986.
[23] Intel Corporation, A Touchstone DELTA System Description, 1990.
[24] Intel Corporation, Paragon XP/S Product Overview OR, Supercomputer Systems Division, 1991.
[25] S.L. Johnsson and C.T. Ho, 'Optimum Broadcasting and Personalized Communication in Hypercubes,' IEEE Trans. on Computers, Vol. 38, No. 9, pp. 1249-1268, September 1989.
[26] P. Kermani and L. Kleinrock, 'Virtual Cut-Through: A New Computer Communication Switching Technique,' Computer Networks, Vol. 3, No. 4, pp. 267-286, 1979.
[27] R. Kesavan, K. Bondalapati, and D.K. Panda, 'Multicast on Irregular Switch-Based Networks with Wormhole Routing,' Proceedings of the third International Symposium on High Performance Computer Architecture (HPCA-3), pp. 48-57, February 1997.
[28] R. Kesavan and D.K. Panda, 'Multicasting on Switch-Based Irregular Networks using Multi-Drop Path-Based Multidestination Worms,' Proceedings of the 2nd Parallel Computing, Routing, and Communication Workshop (PCRCW'97), pp. 179-192, Atlanta, Georgia, June 1997.
[29] R.E. Kessley and J.L. Schwazmeier, CRAY T3D: A New Dimension for Cray Research, COMPCON, pp. 176-182, 1993.
[30] Y. Lan, A.H. Esfahanian, and L.M. Ni, 'Multicast in Hypercube Multiprocessors,' Journal of Parallel and Distributed Computing, pp. 30-41, 1990.
[31] R. Libeskind-Hadas, D. Mazzoni, and R. Rajagopalan, 'Tree-Based Multicasting in Wormhole-Routed Irregular Topologies,' Proceedings of the Merged Twelfth International Parallel Processing Symposium and the Ninth Symposium on Parallel and Distributed Processing, April 1998.
[32] X. Lin, P.K. McKinley, and L.M. Ni, 'Deadlock-Free Multicast Wormhole Routing in 2D Mesh Multicomputers,' IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 8, pp. 793-804, October 1994.
[33] M.P. Malumbres and J. Duato, 'An efficient implementation of tree-based Multicast Routing for Distributed Shared-Memory multiprocessors,' Journal of Systems Architecture, Vol. 46, No. 11, pp. 1019-1032, September 2000.
[34] P.K. McKinley, H. Xu, A.H. Esfahanianm, and L.M. Ni, 'Unicast-Based Multicast Communication in Wormhole-Routed Networks,' IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No 12, pp. 1252-1265, December 1994.
[35] P.K. McKinley, Y.J. Tsai, and D.F. Robinson, 'Collective Communication in Wormhole-Routed Massively Parallel Computers,' Computer, Vol. 28, No. 12, pp. 39-50, December 1995.
[36] V.E. Mendia and D. Sarkar, 'Optimal Broadcasting on the Star Graph,' IEEE Trans. on Parallel and Distributed Systems, Vol. 3, No. 4, pp. 389-396, July 1992.
[37] J. Misic and Z. Jovanovic, 'Communication Aspects of the Star Graph Interconnection Network,' IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 7, pp. 678-687, July 1994.
[38] L.M. Ni and P.K. McKinley, 'A Survey of Wormhole Routing Techniques in Direct Networks,' IEEE Computer, Vol. 26, No. 2, pp. 62-76, February 1993.
[39] L.M. Ni, 'Should Scalable Parallel Computers Support Efficient Hardware Multicast?,' Proceedings of the 1995 ICPP Workshop on Challenges for Parallel Processing, pp. 2-5, August 1995.
[40] M. Nigam, S. Sahni, and B. Kirshnamurthy, 'Embedding Hamiltonians and Hypercubes in Star Interconnection Graphs,' Proceedings of International Conference on Parallel Processing, Vol. III, pp. 340-343, August 1990.
[41] S.F. Nugent, 'The iPSC/2 direct-connect technology,' Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, pp. 51-59, January 1988.
[42] P.R. Nuth and W.J. Dally, 'The J-Machine Network,' IEEE International Conference on Computer Design: VLSI in Computer and Processors, pp. 420-423, 1992.
[43] D.K. Panda, S. Singal, and P. Prabhakaran, 'Multidestination Message Passing Mechanism Conforming to Base Wormhole Routing Scheme,' Proceedings of the Parallel Computer Routing and Communication Workshop (PCRCW'94), Lecture Notes in Computer Science, No. 853, Springer-Verlag, pp. 131-145, 1994.
[44] D.K. Panda, S. Singal, and R. Kesavan, 'Multidestination Message Passing in Wormhole k-ary n-cube Networks with Base Routing Conformed Path,' IEEE Trans. on Parellel and Distributed Systems, Vol. 10, No. 1, pp. 76-96, January 1999.
[45] W. Qiao, L.M. Ni, and T. Rokicki, 'Adaptive-Trail Routing and Performance Evaluation in Irregular Networks Using Cut-Through Switches,' IEEE Trans. on Parallel and Distributed Systems, Vol. 10, No. 11, pp. 1138-1157, November 1999.
[46] Qiu, S.G. Akl, and I. Stojmenovic, 'On Some Properties and Algorithms for the Star and Pancake Interconnection Networks,' Journal of Parallel and Distributed Computing, Vol. 22, No. 1, pp. 16-25, July 1994.
[47] D.F. Robinson, P.K. McKinley, and B.H.C. Cheng, 'Optimal Multicast Communication in Wormhole-Routed Torus Networks,' IEEE Trans. on Parallel and Distributed Systems, Vol. 6, No. 10, pp. 1029-1042, October 1995.
[48] D.F. Robinson, P.K. McKinley, and B.H.C. Cheng, 'Path-Based Multicast Communication in Wormhole-Routed Unidirectional Torus Networks,' Journal of Parallel and Distributed Computing, Vol. 45, No. 2, pp. 104-121, September 1997.
[49] M. Schmidt-Voigt, 'Efficient Parallel Communication with the nCUBE 2S Processor.,' Parallel Computing, Vol. 20, pp. 509-530, 1994.
[50] M.D. Schroeder, A.D. Birrell, M. Burrows, H. Murray, R.M. Needham, T.L. Rodeheffer, E.H. Satterthwaite, and C.P. Thacker, 'Autonet: A High-Speed, Self-Configuring Local Area Network Using Point-to-Point Links,' Technical Report SRC research report 59, DEC, April 1990.
[51] C.L. Seitz, 'The Cosmic Cube,' Communications of the ACM, Vol. 28, No. 1, pp. 22-33, January 1985.
[52] C.L. Seitz, W.C. Athas, C.M. Flaig, A.J. Martin, J. Seizovic, C.S. Steels, and W.K. Wu, 'The Architecture and Programming of Ametek Series 2010 Multicomputer,' Proceedings of the Third Conference on Hypercube Concurrent Computers and Applications, Vol. 1, pp. 33-36, 1988.
[53] J.-P. Sheu and M.-Y. Su, 'A Multicast Algorithm for Hypercube Multiprocessors,' Processdings of International Conference on Parallel Processing, Vol. III, pp. 18-22, August 1992.
[54] J.-P. Sheu, W.-H. Liaw, and T.-S. Chen, 'A Broadcasting Algorithm in Star Graph Interconnection Networks,' Information Processing Letters, Vol. 48, pp. 237-241, September 1993.
[55] J.-P. Sheu, C.-T. Wu, and T.-S. Chen, 'An Optimal Broadcasting Algorithm without Message Redundancy in Star Graphs,' IEEE Trans. on Parallel and Distributed Systems, Vol. 6, No. 6, pp. 653-658, June 1995.
[56] R. Sivaram, D.K. Panda, and C.B. Stunkel, 'Multicasting in Irregular Networks with Cut-Through Switches using Tree-Based Multidestination Worms,' Proceedings of the 2nd Parallel Computing, Routing, and Communication Workshop (PCRCW'97), pp. 35-48, Atlanta, Georgia, June 1997.
[57] R. Sivaram, R. Kesavan, D.K. Panda, and C.B. Stunkel, 'Where to Provide Support for Efficient Multicasting in Irregular Networks: Network Interface or Switch?,' International Conference on Parallel Processing, pp. 452-459, August 1998.
[58] R. Sivaram, C.B. Stunkel, and D.K. Panda, 'Implementing Multidestination Worms in Switch-Based Parallel Systems: Architectural Alternatives and their Impact,' IEEE Trans. on Parallel and Distributed Systems, Vol. 11, No. 8, pp. 794-812, August 2000.
[59] C.B. Stunkel, D.G. Shea, B. Abail, M.G. Atkins, C.A. Bender, D.G. Grine, P. Hochschild, D.J. Joseph, B.J. Nathanson, R.A. Swetz, R.F. Stucke, M. Tsao, and P.R. Varker, 'The SP-2 Performance Switch,' IBM System Journal, Vol. 34, No. 2, pp. 185-204, February 1995.
[60] Y.-C. Tseng, D. K. Panda, and T.-H. Lai, 'A Trip-based Multicasting Model for Wormhole-routed Networks with Virtual Channels,' IEEE Trans. on Parallel and Distributed Systems, Vol. 7, No. 2, pp. 138-150, February 1996.
[61] Y.-C. Tseng, T.-Y. Juang, and M.-C. Du, 'Some Heuristics and Experiments for Building a Multicasting Tree in a High-Speed Network,' Proceedings of HPC Asia'97 Conference, Korea, pp. 248-253, April 1997.
[62] Y.-C. Tseng and J.-P. Sheu, 'Toward Optimal Broadcast in a Star Graph Using Multiple Spanning Trees,' IEEE Trans. on Computers, Vol. 46, No. 5, pp. 593-599, May 1997.
[63] Y.-C. Tseng, S.-H. Chang, and J.-P. Sheu, 'Fault-Tolerant Ring Embedding in a Star Graph with Both Link and Node Failures,' IEEE Trans. on Parallel and Distributed Systems, Vol. 8, No. 12, pp. 1185-1195, December 1997.
[64] Y.-C. Tseng, M.-H. Yang, and T.-Y. Juang, 'Achieving Fault-Tolerant Multicast in Injured Wormhole-Routed Tori and Meshes Based on Euler Path Construction,' IEEE Trans. on Computers, Vol. 49, No. 3, pp. 1282-1296, March 2000.
[65] S.-Y. Wang, Y.-C. Tseng, and C.-W. Ho, 'Efficient Multicast in Wormhole-Routed 2D Mesh/Torus Multicomputers: A Network-Partitioning Approach,' The sixth Symposium on the Frontiers of Massively Parallel Computation, pp. 42-49, 1996.
[66] J.-S. Yang and C.-T. King, 'Efficient Tree-Based Multicast in Wormhole-Routed 2D Meshes,' Proceedings of 1997 International Symposium on Parallel Architecture, Algorithms and Networks (ISPAN'97), pp. 495-500, December 1997.
[67] Z. Zhou, W. Shi, and Z. Tang, 'Efficient Multidestination Multicast on Regular Router-Based Networks,' Proceedings of the Fourth International Conference/Exhibition on High Performance Computing in Asia-Pacific Region (HPC Asia'2000), Vol. 1, pp. 82-87, May 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔