跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/29 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭銘權
研究生(外文):Ming-Chang Xhiao
論文名稱:以框架頻寬分配方式在上行傳輸時提供比例式延遲差別服務
論文名稱(外文):Using Frame-Based Bandwidth Allocation to Achieve Proportional Delay Differentiation in Uplink Transmission
指導教授:賴源正賴源正引用關係
指導教授(外文):Yuan-Chan Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:69
中文關鍵詞:等待時間優先權比例式延遲差異性
外文關鍵詞:Proportional delay differentiationwaiting time priority
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  為了達到比例式延遲差異性,一個著名的等待時間優先權排程因應而生。在中央集權式雙向網路,像是光纖同軸混合網路、無線非同步傳輸模式網路以及無線架構網路中,這個排程可在下行傳輸中,達到很好的比例式延遲差異性;然而其卻不適用於上行傳輸,這是因為中央控制器不容易得知上傳封包之等待時間。

  在這篇論文中,我們提出一個框架式頻寬分配的方法,使得上行傳輸也能達到比例式延遲差異性。當全部的頻寬需求大於給上傳通道的頻寬時,我們利用四種頻寬配置演算法: (1) 比例式線性分配演算法;(2) 比例式多項式分配演算法;(3) 比例式最大最小分配演算法;(4) 比例式最小最大分配演算法,來達到比例式延遲。

  而當全部頻寬需求小於通道的頻寬時,如果配置給使用者的頻寬剛好等於他們所預估需要的,那麼可能會有一些頻寬的浪費,為了避免此種的浪費,在此情況下,我們也提出了四種頻寬配置演算法: (1) 公平性分配演算法;(2) 加權式分配演算法;(3) 滿足需求參考先前分配演算法;(4) 滿足需求預測未來分配演算法。

  實驗結果顯示,比例式最小最大分配演算法的方法可以達到非常好的比例式延遲,效果也比其他方法來得顯著。因此,在上行通道中,能提供比例式延遲差異性,比例式最小最大分配演算法是最好的選擇。

  從避免頻寬浪費的觀點,實驗的結果顯示,公平性分配演算法、滿足需求參考先前分配演算法與滿足需求預測未來分配演算法,這三個方法可以達到很好的節省頻寬效果。除此之外,實驗的結果也顯示避免浪費頻寬的方法會影響延遲的比例。
  To achieve the proportional delay differentiation, a famous method, waiting time priority (WTP) scheduler, was proposed [1]. In a central-controlled bi-directional network, like Hybrid Fiber-Coax Networks (HFC)[2,3], Wireless ATM (WATM)[4, 5, 6, 7, 8 ], and wireless infrastructure [9, 10, 11], this scheduler does achieve the proportional delay differentiation very well in downlink transmission. However, it is not suitable in uplink transmission because the central controller perceiving the waiting time of upstream packets is difficult. In this thesis, we proposed a frame-based allocation mechanism to provide the proportional delay differentiation in the uplink transmission. Four bandwidth allocation algorithms, proportional linear algorithm, proportional polynomial algorithm, proportional max-min algorithm, and proportional min-max algorithm, were proposed to achieve proportional delay when the total predicted bandwidth requirement exceeds the bandwidth supplied by uplink channel. Besides, when the total bandwidth requirement is less than the link bandwidth, if the allocated bandwidth for a connection is equal to its predicted requirement, some bandwidth may be waste. In order to avoid this waste, we also proposed four bandwidth allocation algorithms, fair requirement allocation (FRA), weighted requirement allocation (WRA), requirement+previous allocation (RPA), and requirement+next allocation (RNA), in this case.

  The simulation results show that the proportional min-mix algorithm can achieve the proportional delay very well and outperform other algorithms. Therefore, to provide the proportional delay differentiation in uplink transmission, the proportional min-max algorithm is the best choice.

  The simulation results also show that FRA, RPA, and RNA can avoid the waste of link bandwidth. Beside, the method adopted in the non-congested state that the total bandwidth requirement is less than the link bandwidth actually affects the achieved delay proportion.
Abstract in Chinese
Abstract in English
Acknowledge
Table of Contents

Chapter 1 Introduction………………………………………………………………1
Chapter 2 Preliminaries…………………………………………………………….…7
  2.1 Proportional delay differentiation model……………………………………7
  2.2 WTP scheduler………………………………………………………………8
  2.3 The central-controlled bi-directional network.………………………………8
  2.4 The un-suitability of WTP in the uplink transmission………………………11
Chapter 3 Proposed Algorithm………………………………………………………13
  3.1 A frame based bandwidth allocation………………………………………13
  3.2 Proportional delay algorithm during congestion……………………………17
    1. Proportional linear algorithm……………………………………………17
    2. Proportional polynomial algorithm……………………………………19
    3. Proportional Max-min algorithm………………………………………21
    4. Proportional Min-max algorithm………………………………………25
  3.3 Allocation algorithm during non-congestion………………………………36
    1:Fair Requirement Allocation (FRA)……………………………………37
    2.Weighted Requirement Allocation (WRA)……………………………38
    3.Requirement + Previous Allocation (RPA)……………………………40
    4.Requirement + Next allocation (RNA)…………………………………41
Chapter 4 Experiment Simulation and Result………………………………………44
  4.1 Simulation Environment…………………………………………………45
  4.2 Simulation Results………………………………………………………47
    Experiment 0……………………………………………………………47
    Experiment 1……………………………………………………………49
    Experiment 2……………………………………………………………51
    Experiment 3……………………………………………………………53
    Experiment 4…………………………………………………………....57
    Experiment 5……………………………………………………………59
    Experiment 6…………………………………………………………....60
    Experiment 7……………………………………………………………61
    Experiment 8………………………………………………………….62
Chapter 5 Conclusions……………………………………………………………64
Bibliography………………………………………………………………………66
[1] C. Dovrolis, D. Stiliadis, and P. Ramanathan, “Proportional differentiated services: delay differentiation and packet scheduling,” IEEE/ACM Transactions on Networking, vol. 10, pp. 12-26, Feb. 2002.

[2] IEEE, “IEEE Project 802.14/a Draft 2 Revision 2: Cable-TV Access Method and Physical Layer Specification (status: interim),” http://www.walkingdog.com, http://www.802.14.org, Jul. 1997.

[3] IEEE, “IEEE Project 802.14/a Draft 3 Revision 1: Cable-TV Access Method and Physical Layer Specification (status: interim),” http://www.walkingdog.com, http://www.802.14.org, Apr. 1998.

[4] G. Donaldson and D. Jones, “Cable television broadband network architectures,” IEEE Communications Magazine, vol. 39, Jun. 2001.

[5] G. A. Awater and J. Kruys, “Wireless ATM–an overview,” Mobile Networks and Applications, vol. 1, pp. 235-243, 1996.

[6] D. Raychaudhuri, “Wireless ATM Networks: Technology Status and Future Directions,” Proc. of the IEEE, vol. 87, pp. 1790-1806, Oct. 1999.

[7] B. Kraimeche, “Wireless ATM: Current Standards and Issues,” WCNC 1999, IEEE Wireless Communications and Networking Conference, vol. 1, pp. 56-60, 1999.

[8] D. Raychaudhuri, L. J. French, R. J. Siracusa, S. K. Biswas, R. Yuan, P. Narasimhan, and C. Johnston, “WATMnet: A prototype wireless ATM system for multimedia personal communication,” IEEE J. Select. Areas Commun., vol. 15, pp. 83-95, 1997.

[9] S. Dravida, J. Hong, M. Kodialam, B. Samadi, and W. Yufei, “Narrowband and broadband infrastructure design for wireless networks,” IEEE Communications Magazine, vol. 36, May 1998.

[10] S. T. Sheu, Y. H. Lee, and M. H. Chen, “Providing Multiple Data Rates in Infrastructure Wireless Networks,” Proc. of IEEE GLOBCOM'2001, San Antonio, Nov. 2001.

[11] M. H. Chen, S. T. Sheu, and Y. H. Lee, “Fair Bandwidth Allocation Fuzzy Controller for the IEEE 802.11 Multiple Data Rate Infrastructure Networks,” Proc. of 9th National Conference on Fuzzy Theory and Its Applications, Chung-Li, Taiwan, pp. D5.1, Nov. 2001.

[12] S. Shenker and C. Patridge, “Specification of Guaranteed Quality of Service,” RFC 2212, Sep. 1997.

[13] S. Shenker and J. Wroclawski, “General Characterization Parameters for Integrated Service Network Elements,” RFC 2215, Sep. 1997.

[14] K. Nichols, V. Jacobson, and L. Zhang, “A Two-bit Differentiated Services Architecture for the Internet,” draft-nichols-dsopdef-00.txt, Internet Draft, Nov. 1997.

[15] V. Jacobson, “An Architecture for Differentiated Service,” Talk in the IntServ WG at the 39th IETF, Munich, Germany, Aug. 1997.

[16] Matthew K. H. Leung, John C. S. Lui, and David K. Y. Yau, “Characterization and Performance Evaluation of Proportional Delay Differentiated Services,” In Proc. IEEE International Conference on Network Protocols, Osaka, Japan, Nov. 2000.

[17] C. Dovrolis, D. Stiliads, and P. Ramanathan, “Proportional Differentiated Services: Delay Differentiation and Packet Scheduling,” Proc. of 1999 ACM SIGCOMM conference, Cambridge MA, Sep. 1999.

[18] C. Dovrolis and P. Ramanathan, “A Case for Relative Differentiated Services and the Proportional Differentiated Model,” In IEEE Network, pp. 26-34, Sep. 1999.

[19] C. L. Chen and W. T. Lee, “A novel MAC protocol for supporting quality of services over IEEE 802.14,” Proc. of IEEE Region 10 International Conference, vol. 1, pp. 18-22, 2001.

[20] M. D. Corner, J. Liebeherr, N. Golmie, C. Bisdikian, and D. Su, “A Priority Scheme for the IEEE 802.14 MAC Protocol for Hybrid Fiber-Coax Networks,” IEEE/ACM Transactions on Networking, Apr. 2000.

[21] P. Mathys and P. Flajolet, “Q-ary Collision Resolution Algorithms Random Access Systems with Free or Blocked Channel Access,” IEEE Transactions on Information Theory, Mar. 1985.

[22] L. French, and D. Raychaudhuri, “The WATMnet: A Prototype Wireless ATM System for Multimedia Personal Communication,” In Proc. ICC'95, Dallas, Jun. 1996.

[23] J. L. Massey, “Random Access Communications,” IEEE Transactions on Information Theory 31, Mar. 1985.

[24] N. Abramson, “Multiple Access Communications: Foundations for Emerging Technologies,” IEEE Press, pp. 18-25, 1993.

[25] N. Abramson, “Multiple Access in Wireless Digital Networks,” In Proc. IEEE, Vol. 82, No. 9, pp. 1360-1369, Sept. 1994.

[26] B. Kraimeche, “Wireless ATM: Current Standards and Issues”, WCNC 1999, IEEE Wireless Communications and Networking Conference, vol. 1, pp. 56-60, 1999.

[27] S. Chowdhury and K. Sohraby, “Alternative bandwidth allocation algorithms for packet video in ATM networks,” In Proc. IEEE INFOCOM'92, vol. 3, pp. 1061-1068, 1992.

[28] S. K. Biswas, D. Reininger, and D. Raychaudhuri, “UPC based bandwidth allocation for VBR video in wireless ATM links,” In Proc. ICC'97, vol. 2, pp. 1073-1079, 1997.

[29] A. Malla, M. El-Kadi, and P. Todorova, “Dynamic bandwidth allocation policies,” In Proc. IEEE INFOCOM'96, vol. 2, pp. 880-887, 1996.

[30] A. Malla, M. El-Kadi, and P. Todorova, “A fair resource allocation protocol for multimedia wireless networks,” In the Parallel Processing, International Conference on, pp. 437-443, 2001.

[31] S. Biswas and R. Izmailov, “Design of a Fair Bandwidth Allocation Policy for VBR Traffic in ATM Networks,” In Proc. of GLOBECOM'98, Sydney, Australia, pp. 2425-2431, Nov. 8-12 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top