跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:錢盈秀
研究生(外文):Ying-Hsiu Chien
論文名稱:有限資源配置下工作團隊之形成
論文名稱(外文):Team Collocation with Limited Resources
指導教授:謝中奇謝中奇引用關係
指導教授(外文):Chung-Chi Hsieh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:45
中文關鍵詞:團隊工作資源配置
外文關鍵詞:resource allocationteaming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1102
  • 評分評分:
  • 下載下載:349
  • 收藏至我的研究室書目清單書目收藏:1
團隊式工作在成員間能夠有較佳的溝通互動並且具有資源共用的特性,故現今企業組織多採用團隊式結構來進行組織規劃與工作執行;而團隊中成員的互動與協調更是影響工作成效的主要原因之一。本論文研究的目的在於探討,如何在有限資源分配下進行工作團隊的配置,除了根據個別成員對所能擁有資源的偏好外,並考慮成員與成員之間的相互關係。透過決策者取得每個成員對於其他成員以及對其所可擁有資源的偏好資訊,並將這些偏好資訊轉換為個別成員的效用函數 (utility function);決策者即可在期望整體偏好效用值最大的目標下,分配人員與資源以形成較佳的工作團隊。本論文採用啟發式演算法實作此有限資源配置下工作團隊形成之最佳化問題。
Teamwork is quite common in organizations nowadays due to the fact that better coordination and resources sharing can be achieved. The purpose of this study is to investigate teaming within a group of finite members with limited resources in an organization. An organization adopts the form of a multi-agent system; each individual in the organization is viewed as an agent. By obtaining each individual’s preference information regarding the team members and the resource bundles and transforming the information to a utility function, the coordinator is to determine how to build the teams and allocate resources to each of the teams. A heuristic algorithm is developed in this study to find the optimal team collocation and resource allocation. The simulation experiment shows that a good teaming and resource allocation strategy can be obtained, hence helping the coordinator to form teams and allocate resources to each team according to the preference information of each individual in the organization.
ACKNOWLEDGEMENTS ii
LIST OF TABLES v
LIST OF FIGURES vi
CHAPTER
I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . 2
II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Teamwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Team performance . . . . . . . . . . . . . . . . . . . . 5
2.2 Information acquisition in a multi-agent system . . . . . . . . . 5
2.2.1 Preference information for resource allocation . . . . . 6
2.2.2 Information acquisition among multiple agents . . . . 11
2.3 Social relationships of agents . . . . . . . . . . . . . . . . . . . 12
2.3.1 Social utility . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Social network analysis . . . . . . . . . . . . . . . . . 13
2.4 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 15
III. Team Collocation with Limited Resources . . . . . . . . . . . . . 17
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Preference information of resource bundles . . . . . . 19
3.2.2 Social relationships . . . . . . . . . . . . . . . . . . . 20
3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 21
IV. Genetic optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Data simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Genetic optimization . . . . . . . . . . . . . . . . . . . . . . . . 24
V. Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Experimental result . . . . . . . . . . . . . . . . . . . . . . . . 29
VI. Conclusion and Future research . . . . . . . . . . . . . . . . . . . 33
REFERENCES 35
Abrahams, P., Balart, R., Byrnes, J. S., Cochran, D. and Larkin, M. J. 1998. MAAP: the military aircraft allocation planner. In Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (pp. 336–341). Alaska.
Dose, J. J. and Klimoski, R. J. The diversity of diversity: work values effects on formative team processes. Human Resource Management Review, 9(1), 83–108, 1999.
Gen, M. and Cheng, R. Genetic Algorithms and Engineering Design. John Wiley & Sons, Inc., 1996.
Hannoun, M., Boissier, O., Sayettat, C. and Sichman, J. 1998. Towards a model of multi-agent systems’ organization. In Workshop on Computational and Mathematical Organization Theory (pp. 1–3). Montreal, Canada.
Hogg, L. M. and Jennings, N. R. 1997. Socially rational agents. In Proc. AAAI Fall Symposium on Socially Intelligent Agents (pp. 61–63). Cambridge, MA.
Hough, L. M. and Oswald, F. L. Personnel selection: looking toward the future–remembering the past. Annual Review of Psychology, 51, 631–664, 2000.
Ibaraki, T. and Katoh, N. Resource Allocation Problems: Algorithmic Approaches. Cambridge, MA: MIT Press, 1988.
Lesser, V. R. Cooperative multiagent systems: a personal view of the state of the art. IEEE Transactions on Knowledge and Data Engineering, 11(1), 133–142, 1999.
Lurey, J. S. and Raisinghani, M. S. An empirical study of best practices in virtual teams. Information & Management, 38, 523–544, 2001.
Marschak, J. Elements for a theory of teams. Management Science, 1(2), 127-137, 1955.
Misra, S. R., Rao, H. R. and Divakar, S. An empirical investigation into the validity of transitivity and non-satiety assumptions in partial order structures: a note. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 6, 820–824, 2000.
Moore, J. C., Rao, H. R. and Whinstion, A. B. Multi-agent resource allocation: an incomplete information perspective. IEEE Transactions on Systems, Man and Cybernetics, 24(8), 1208–1219, 1994.
Moore, J. C., Rao, H. R. and Whinston, A. B. Experimental strategies for preference information acquisition: a lattice path treatment. Group Decision and Negotiation, 6, 139–158, 1996a.
Moore, J. C., Rao, H. R. and Whinston, A. B. Information processing for a finite resource allocation mechanism. Economic Theory, 8(2), 267–290, 1996b.
Moore, J. C., Rao, H. R., Whinston, A. B., Nam, K. and Raghu, T. S. Information acquisition policies for resource allocation among multiple agents. Information Systems Research, 8(2), 151–170, 1997.
Owechko, Y. and Shams, S. 1994. Comparison of neural network and genetic algorithms for a resource allocation problem. In Neural Networks, IEEE World Congress on Computational Intelligence (Vol. 7, pp. 4655–4660). Orlando, FL.
Papavassiliou, S., Puliafito, A., Tomarchio, O. and Ye, J. 2001. Integration of mobile agents and genetic algorithms for e.cient dynamic network resource allocation. In Sixth IEEE Symposium on Computers and Communications (pp. 456–463). Hammamet, Tunisia.
Paris, C. R., Salas, E. and Cannon-Bowers, J. A. Teamwork in multi-person systems: a review and analysis. Ergonomics, 43(8), 1052–1075, 2000.
Pawar, K. S. and Sharifi, S. Physical or virtual team collocation: does it matter? International Journal of Production Economics, 52, 283–290, 1997.
Poltrock, S. E. and Engelbeck, G. Requirements for a virtual collocation environment. Information and Software Technology, 41(6), 331-339, 1999.
Rao, H. R. An information and preference theory approach to a discrete resource allocation problem. Automatica, 27, 837–843, 1991.
Rao, H. R. A choice set-sensitive analysis of preference information acquisition about discrete resources. IEEE Transactions on Systems, Man and Cybernetics, 23(4), 1062–1071, 1993.
Rao, H. R. Two schemes for information acquisition: an entropic assessment. Automatica, 30(5), 805–816, 1994.
Rouse, W. B., Cannon-Bowers, J. A. and Salas, E. The role on mental models in team performance in complex systems. IEEE Transactions on Systems, Man and Cybernetics, 22(6), 1296–1308, 1992.
Shao, B. B. M. and Rao, H. R. A comparative analysis of information acquisition mechanisms for discrete resource allocation. IEEE Transactions on Systems, Man and Cybernetics Part A: Systems and Humans, 31(3), 199–209, 2001.
Stough, S., Eom, S. and Buckenmyer, J. Virtual teaming: a strategy for moving your organization into the new millennium. Industrial Management & Data System, 100(8), 370–378, 2000.
Tate, D. M. and Smith, A. E. A genetic approach to the quadratic assignment problem. Computers & Operations Research, 22(1), 73–83, 1995.
Wasserman, S. and Faust, K. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top