跳到主要內容

臺灣博碩士論文加值系統

(54.224.117.125) 您好!臺灣時間:2022/01/28 19:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林志朋
研究生(外文):Chih-Peng Lin
論文名稱:以油酸分散配合氣氛加熱製造奈米alpha相氧化鋁粉末之研究
論文名稱(外文):Preparation of Nanometer-Sized ��-Alumina Powders by Calcining an Emulsion of Boehmite and Oleic Acid
指導教授:溫紹炳
指導教授(外文):S. B. Wen
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:128
中文關鍵詞:穿透式電子顯微鏡交連單水鋁石膠微胞相變化油酸氧化鋁霍氏紅外光譜儀
外文關鍵詞:cross-linkingoleic acidboehmitealuminaphase transformationmicelleFTIR
相關次數:
  • 被引用被引用:7
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:1
本研究提供了製造奈米氧化鋁粉末的方式,在研究中以添加油酸與氧化鋁前導物單水鋁石膠混合後,經過適當攪拌及靜置後進行煆燒,在加熱過程時混合物中的油酸生成阻斷物,以去除可能因相轉換過程中伴隨的粒子燒結或晶粒成長的發生,以達成製造奈米級�悇萛韙ずT及其他相氧化鋁微粉為目的。
本研究氧化鋁前導物原料分別以化學沈澱膠及商用單水鋁石膠體為材料,並與油酸、碳黑等混合後,予以加熱處理。以密閉及通入氮氣的加熱過程中,沈澱膠混合油酸後加熱之相變化為γ- →δ- →α-Al2O3方式進行,其中的氧化鋁的過渡相沒有明顯的�嶈萛韙ずT,而所見由�圇衕鉥型��悇菕C且沈澱膠體與油酸混合後靜置的樣品在油酸作用影響下,提前了�悇萛韙ずT生成的溫度至1000℃。另一方面,以商用單水鋁石之前導物,加入油酸則有�嶈萛韙ずT生成,相變過程為γ- →δ- →θ- →α-Al2O3方式進行,θ相氧化鋁至α相氧化鋁相轉換溫度主要發生在1150℃∼1220℃之間。
油酸與單水鋁石膠混合之霍氏紅外光譜的解析中OH 鍵結具有微乳胞在3550-3280 cm-1的佐證頻譜出現,在1150-1350cm-1為分裂峰具有微乳膠情形,因加熱作用,產生水油比例失去平衡時,吸收峰將形成組合峰。在溫度在 100oC時,980-998 cm-1間的吸收峰是油酸與單水鋁石間存在化學吸附之油酸鋁鍵結,同時在碳氫鏈間會產生-C-O-C-交連(crosslinking),適當的鍵結或吸附作用有助於油膠混合物在熱處理過程中的穩定性,且油酸分解形成碳的隔絕物,油酸不因為加熱氣化蒸發失去作用。
油膠混合後加熱過程中同時存在氧化鋁與碳的生成,由含碳物質在霍式紅外光譜分析氧化鋁表面因存在碳的阻隔使霍式紅外光譜振動峰值偏向1612 cm-1,一旦將碳燒除後轉為氧化鋁正常之表面1634 cm-1含水峰,此為樣品含有隔離碳存在的依據。為本研究製程可行性的重要論述。
本研究中生成氧化鋁前導物的差異性,且混合過程的油膠環境及機構不同,使得生成氧化鋁的結晶及非晶質物,在各項條件控制得宜的情況下,以粉末X光繞射儀及穿透式電子顯微鏡計算,可得到10~50nm大小之�悇萛韙ずT且含有多相態氧化鋁粉末同時生成。
The present study provides a method for producing nanoscale-sized Al2O3 crystallites in coexistence with carbon generated during heating, to obstruct agglomeration during the formation of Al2O3. First, a boehmite gel precursor was mixed with oleic acid to form an emulsion. After an appropriate time period, the mixture was calcined under a controlled atmosphere, at different temperatures and heating times. Finally, the products of the reaction were identified by XRD and FTIR, as well as TEM.
In this study, there are two different parts of boehmite materials, which is preparation of the boehmite gel from the chemical precipitation; the other is commodity boehmite gel. Since it mixed with the different precursor and oleic acid, it made the different phase transformation after calcination process. For the emulsion of the precipitation boehmite gel and oleic , phase transformation followed the progression ��- �_ ��- →��-Al2O3 in the calcination process. The ��-phase was discovered in the 900°C product, but no ��-phase was apparent. Another important point is when oleic acid and boehmite mixture for 24 hours, ��-Al2O3 can be formed its formation temperature can be lowered. But the commodity boehmite and oleic acid are appeared through the normal phase transformation of ��- �_ ��- �_ ��- �_ ��-Al2O3. However, some variations in the mechanism of phase transformation of boehmite type with organic compounds oleic acid are expected under calcination.
In an ideal W/O system with micelles, the emulsion creates aluminum oleate during calcination by adsorption of the materials when C-O-C cross-linking, attributed to oxygenated oleic acid, stabilizes the oleic acid itself and helps generate carbon. The FTIR spectra were used when the mixed emulsion of oleic acid and boehmite gel was heated, to investigate the adsorption reaction of the aluminum oleate; the C-O-C cross-linking structure of oxygenation, which aided in carbon formation; and the ability of the carbon generated with ��-Al2O3 during phase transformation to prevent agglomeration As the final nanometer-sized ��-Al2O3 appears during the phase transformation process, the coexisting carbon segregates the growth mechanism. TEM and XRD indicated that the individual crystal diameters in the 10~50 nm.
中文摘要 I
英文摘要 III
致謝 V
總目錄 VI
表目錄 IX
圖目錄 X
本文
第一章緒論 1
1-1前言 1
1-2文獻回故 4
1-3研究目的 7
第二章理論基礎 9
2-1單水鋁石膠體製備 9
2-1-1化學沈澱法 9
2-1-2溶膠-凝膠法 10
2-2混合之乳膠理論 14
2-3氧化鋁結晶相 18
2-4紅外光的解析 23
2-4-1氧化鋁的紅外光吸收光譜解析 23
2-4-2油酸的紅外光吸收光譜解析 28
2-4-3油膠混合及熱處理過程中紅外光吸收光譜解析 30
2-5有機物的加熱反應 34
第三章實驗方法及步驟 35
3-1 實驗原料 35
3-2實驗設計 45
3-3 實驗流程與步驟 48
3-4 特性分析 53
3-4-1粉末晶相鑑定 53
3-4-2平均晶粒計算及晶徑測量 54
3-4-3 顯微結構分析 57
3-4-4 紅外光鍵結解析 58
3-4-5示差熱重分析 59
3-4-6成份分析 60
3-4-7其他設備 61
第四章 結果與討論 65
4-1油膠混合之試驗結果 65
4-2化學沈澱法之單水鋁石膠混合油酸結果 65
4-2-1化學沈澱法之單水鋁石膠混合油酸熱處理相變化結果 65
4-2-2化學沈澱法之單水鋁石膠與油酸間作用及熱處理變化結果 70
4-2-3油膠混合物熱處理後殘碳量 75
4-2-4 油膠混合物煆燒後的晶形 82

4-3商用單水鋁石膠混合油酸結果 86
4-3-1商用單水鋁石膠添加油酸之試驗攪拌時間比較 86
4-3-2商用單水鋁石膠添加油酸與碳黑、活性碳混合結果 87
4-4治具的改善及其他實驗 92
4-5綜合討論 93
第五章結論與建議 96
5-1結論 96
5-2建議 99
5-2-1熱處理改善 99
5-2-2更廣泛之應用-核-殼結構(Core-Shell structure) 99
參考資料 101
附錄 113
1.T. G. Peason, The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London 1955.
2.M. Cifcioglu and M. J. Mayo, “Processing of Nanocrystalline Ceramics”, in Superplasticity in Metals, Ceramics, and Intermetallics, edited by M. J. Mayo, M. Kobayashi, and J. Wadsworth, Pittsburgh, Pennsylvania MRS, 1990, pp.77-86.
3.W. Siegel, S. Ramasamy, H. Hahn, Z. Ti, T. Lu and R. Gronsky, “Synthesis, Characterization, and Properties of Nanophase TiO2”, J. Mater. Res., 3, 1367, 1988.
4.M J. Readey, R. R. Lee, J. W. Halloran and A. H. Heuer, “Processing and Sintering of Ultrafine MgO-ZrO2 and (MgO, Y2O3)-ZrO2 powders”, J. Am. Ceram. Soc. 73, 1499-1503, 1990.
5.汪建民主編,陶瓷技術手冊(上)、(下),中華民國粉末冶金學會,中華民國83年7月。
6.K. Wefers and C. M Bell, “Oxides and Hydroxides of Aluminum”, Alcoa Technical Paper No. 19, Alcoa Laboratories Pittsburgh, PA, 1972.
7.B. C. Lippens and J. H. de Boer, “Study of Phase Transformations during Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction”, Acta Cryst., 17, 1312-1321, 1964.
8.A. C.Tonejc and M. S. Kosanovic, A. M. Tonejc, B. Subotic, and I. Smit, “Equivalence of Ball Milling and Thermal Treatment for Phase Transition in the Al2O3”, J. Alloys Comp, 204, L1-L3, 1994.
9.S. Rajendran, “Production of Ultrafine Alpha Alumina Powders and Fabrication of Fine Grained Strong Ceramics”, J. Mater. Sci., 29, 5664, 1994.
10.S. J. Wilson and J. D. C. McConnell, “A Kinetic of the System γ-AlOOH/Al2O3”, J. Solid State Chem., 34, 315-322, 1980.
11.Pyzalski and M. Wojcik, “The Dehydroxylation of Aluminium Hydroxides and the Kinetics of α-Al2O3 Formation”, J. Therm. Anal., 36, 2147-2151, 1990.
12.T. Sato, “The Thermal Transformation of Alumina Monohydrate, Boehmite”, J. Appl. Chem., 12, 9-12, 1962.
13.P. K. Badker and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina”, J. Mat. Sci., 11, 1794-1806, 1976.
14.F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina”, J. Am. Ceram. Soc., 65(9)442-448, 1982.
15.F. W Dynys and J. W. Halloran, “Alpha Alumina Formation in Al2O3 Gels”, in Ultrastructure Processing of Ceramics, and Composites. Edited by L. L. Hench and D. R. Ulrich, Wiley, New York, pp.142-151, 1984.
16.P. A. Zielinski, R. Schulz, S. Kaliaguine, A. Van Neste “Structural Transformations of Alumina by High Energy Ball Milling” Materials Research Society, 8, 11, 2985-2992, 1993.
17.P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, and H. Schmidt, “Hydrothermal Synthesis of Nanosize α-Al2O3 from Seeded Aluminum Hydroxide”, J. Am. Ceram. Soc., 81(10)2732-2734, 1998.
18.J. A. Thornton and J. Chin, “Structure and Heat Treatment Characteristics of Sputter-Deposited Alumina”, Ceram. Bull., 56(5)504-512, 1977.
19.G. P. Johnston, R. Muenchausen, D. M. Smith, W. Fahrenholtz and S. Foltyn "Reactive Laser Ablation Synthesis of Nanosize Alumina Powder", J. Am. Ceram. Soc., 75, 12, 3293-3298, 1992.
20.H. K. Varma, K. G. K. Warrier and A. D. Damodaran ”Properties of Fine Alumina as Related to Medium of Precipitation” Pmi, 22, 3, 35-36, 1990.
21.J. Ding, T. Tsuzuki and P. G. McCormick “Ultrafine Alumina Particles Prepared by Mechanochemical/Thermal Processing” J. Am. Ceram. Soc., 79(11)2956-2958, 1996.
22.N. S. Bell, S. B. Cho and J. H. Adair “Size Control of α-Alumina Particles Synthesized in 1,4-Butanediol Solution by α-Alumina and α-Hematite Seeding” J. Am. Ceram. Soc. 81 (6)1411-1420, 1998.
23.H. L. Wen and F. S. Yen, “Growth Characteristics of Boehmite-derived Ultrafine Theta and Alpha-alumina Particles during Phase Transformation”, Journal of Crystal Growth 208, 696-708, 2000.
24.N. E. Cipollini, “Emulsion-Char Method for Making Fine Powder”, U.S. Patent No 4,654,075, March 31, 1987.
25.S. D. Ross, G. H. Maher and C. E. Hutchins, “Emulsion-Char Method for Making Fine Ceramic Powder”, U.S. Patent No. 4,749,664, June 7, 1988.
26.G. H. Maher, C. E. Hutchins and S. D. Ross, “Preparation and Characterization of Ceramic Fine Powders Produced by the Emulsion Process”, Am. Ceram. Soc. Bull., 72 [5] 72-76, 1993.
27.D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal alkoxides, Academic Press, New York, 1978.
28.S. E. Friberg and A. Amran, “The Microemulsion/Gel Method” 17-25 from Sol-Gel Processing and Applications, edited by Y. A. Attia, Plenum Press, New York, 1994.
29.D. J. Shanefield, Organic Additives and Ceramic Processing, 211-254, Kluwer Academic Publishers, 1995.
30.Yoshikiyo Moroi, Micelles Theoretical and Applied Aspects, chapter1~4, Plenum Press New York, , 1992.
31.J. W. McBain, in: Colloid Chemistry, Theoretical and Applied (J. Alexander, ed.), Reinhold, New York, 1944.
32.P. Debye and E. W. Anacker, J. Phys. Colloid Chem. 55, 644, 1951.
33.I. Reich, “Factors Responsible for The stability of Detergent Micelles”J. Phys. Chem. 60, 257-262, 1956.
34.F. J. Ewing, “The Crystal Structure of Lepidocrocite”, J. Chem. Phys. 3, 420-424, 1935.
35.I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structure and Transition Sequences”, J. Am. Ceram. Soc., 81(8) 1995-2012, 1998.
36.E. Husson and Y. Repelin, "Structure Studies of Transition Alumina. Theta Alumina”, J. Solid State Inorg. Chem., T.33, 1223-1231, 1996.
37.Y. Chaing, D. P. Birnie Ⅲ, and W. D. Kingery, Physical Ceramics-Principles for Ceramic Science and Engineering, Wiley, New York, 1997.
38.W. H. Gitzen, Alumina as a Ceramic Material, Columbus: The American Ceramic Society 1970.
39.E. Dorre and H. Hubner, Alumina, from Materials Research and Engineering, 9-75, Springer-Verlag Berlin Heidelberg, 1984.
40.H. Winchell, “Navigation in Crystallography”, Bull. Geol. Soc. Amer. 57 295-308, 1946.
41.M. L. Kronberg, “Plastic Deformation of Single Crystals of Sapphire: Basal Slip and Twinning” Acta Met., 5, 507-524, 1957.
42.W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd ed. New York, John Wiley and Sons 1976.
43.L. D. Hart, "Alumina Chemical: Science and Technology Handbook" Am. Ceram. Soc., Inc. Columbus, Ohio, 1990.
44.S. J. Wilson, “The Dehydration of Boehmite,�n��-AlOOH, to ��-Al2O3” J. Solid State Chem., 30, 247-255, 1979.
45.S. J. Wilson, “The Development of Porous Microstructures During the Dehydration of Boehmite”, Mineralogical Magazine, 43, 301-306, 1979.
46.G. Katz, A. W. Nicol and R.Roy, Z. Kristallogr, 130, 388-404, 1969.
47.H. Saalfeld, Clay Minetal. Bull., 3 249-257, 1958.
48.H. C. Stumpf, A. S. Russell, J. W. Newsome and C. M. Tucker, Ind. Eng. Chem. 42, 1398-1403, 1950.
49.R. B. Bagwell and G. L. Messing, “Effect of seeding and Water Vapor on the Nucleation and Growth of α-Al2O3 from γ-Al2O3”, J. Am. Ceram. Soc., 82(4)825-832 1999.
50.J. L. McArdle and G. L. Messing, “Transformation, Microstructure Development, and Densification inα-Fe2O3 Seeded Boehmite Derived Alumina”, J. Am. Ceram. Soc. 76(1)214-221 1993.
51.R. S. Zhou and R. L. Snyder, “Structure and Transformation Mechanisms of the η, γ and θ Transition Aluminas”, Acta Cryst., B47, 617-630 1991.
52.J. L. McArdle, "Seeding with Ferric-Oxide for Enhance Transfornation and Microstructure Development in Boehmite-Derived Alumina", Ph.D. Thesis, The Pennsyvania State University 1989.
53.F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Alum Derived Gamma Alumina”, J. Am. Ceram. Soc. 65, 9 442-448, 1982.
54.F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Al2O3 Gels” in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by L. L. Hench and D. R. Ulrich, John Wiley, New York, 1984, Chap. 11, pp. 142-151.
55.T. C. Chou and T. G. Nieh, “Nucleation and Concurrent Anomalous Grain Growth of ��-Al2O3 during �蛂��� Phase Transformation”, J. Am. Ceram. Soc., 74 9 2270-2279, 1991.
56.I. I. M. Tijburg, H. De Bruin, P. A. Elberse, and J. W. Geus, “Sintering of Pseudo-Boehmite and ��-Al2O3”, J. Mater. Sci., 26, 5945-5949, 1991.
57.P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina”, J. Mater. Sci., 11, 1794-1806, 1976.
58.B Schrader, Infrared and Raman Spectroscopy, 8-16 VCH Publishers, Inc., New York 1995.
59.彭國文, 鈉鈦矽石(Na2TiOSiO4)與鍺酸鈦鈉(Na2TiOGeO4)系材料之熱水溶液製備、結晶化學及光譜性質研究, 26-34,國立成功大學礦冶及材料科學研究博士論文,1996。
60.K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edition, 3-12, John Wiley & Sons, U.S.A. 1986.
61.B. Geoge and P. Mclntyre, Infrared Spectroscopy, 16-42, John Wiley & Sons, London 1987.
62.B. Geoge and P. Mclntyre Infrared Spectroscopy, 81-101, John Wiley & Sons, London 1987.
63.陳壽康,CaO-TiO2-SiO2玻璃結構與結晶行為之研究, 17-18,國立成功大學礦冶及材料科學研究所博士論文,1994。
64.B Schrader, Infrared and Raman Spectroscopy, 123-135 VCH Publishers, Inc., New York 1995.
65.P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry, 312-337, John Wiley & Sons, New York 1986.
66.P. Tarte, “Infra-red Spectra of Inorganic Aluminates and Characteristic ibrational Frequencies of AlO4 tetrahedra and AlO6 Octahedra, Spectrochimica Acta”, 23A, 2127-2143 1967.
67.G. D. Chukin, and Yu. L. Seleznev, “Mechanism of the Thermal Decomposition of Boehmite and a Model of the Aluminum Oxide Structure”, Kinet. Catal. 30, 55-62, 1989.
68.T Sato, “Thermal Decomposition of Aluminium Hydroxides to Aluminas”, Thermochimica Acta, 88, 69-84, 1985.
69.D. Santhiya, S. Subramanian, K. A. Natarajan and S. G. Malghan, “Adsorption and Electrokinetic Studies on Alumina Suspensions Using Poly(vinyl alcohol)”, Minerals & Metallurgical Processing, 16 51~55 1999.
70.R. A. Schroeder, L. L. Lyons, “Infrared Spectra of The Crystalline Inorganic Aluminates,” J. Inorg. Nucl. Chem., 28, 1155-1163 1966.
71.C. J. Serna, J. L. Rendon and J. E. Iglesias, “Infrared Surface Modes in Corundum-type Microcrystalline Oxides”, Spectrochimica Acta, 38A [7] 797-802, 1982
72.R. M. Silcerstein, G. C. Bassler and T. C. Morrill, “Spectrometeric Identification of Organic Compounds”; pp.99-105 3th edition John Wiley, New York 1974.
73.D. L. Pavia, G. M. Lampman and G. S. Kriz, “Introduction to Spectroscopy”; pp.52-63 2nd ed. Saunders College Publishing 1996.
74.R. G. White, “Handbook of Industrial Infrared Analysis”; pp.279 Plenum Press, New York 1964.
75.A. T. Bell and M. L. Hair, “Vibrational Spectroscopies for Adsorbed Species, American Chemical Society”; pp29-30 Washington, D. C., 1980.
76.R. G. White, Handbook of Industrial Infrared Analysis, Plenum Press, New York 1964, p.279.
77.M. O. Ahamad, H. Shaikh, S. G. Dixit and S. Venkatachalam, “Role of Magnetite and Sodium Oleate in the High Gradient Magnetic Separation of Calcite Using Magnetic Coating of the Surface”, Journal Colloid and Interface Science, 155, 340-346 1993.
78. H. MacDonald, B. Bedwell and E. Gulari, “FTIR Spectroscopy of Microemulsion Structure”, Langmuir, 2 704-708, 1986.
79.J. Umemura, D. G. Cameron and H. H. Mantsch, “A fourier Transform Infrared Spectroscopic Study of the Molecular Interaction of Cholesterol with 1, 2-Dipalmitoyl-sn-Glycero-3-Phosphocholine”, Biochemica et Biophysica Acta, 602 32-44 1980.
80.S. Mathur and B. M. Moudgil, “Application of Infrared Spectroscopy in Solid-Solid Separation Processes,” Colloid and Surfaces A: Physicochemical and Engineering Aspects, 93 137-147, 1994.
81.V. M. Lovell, L. A. Goold and N. P. Finkelstein, “Infrared Studies of The Adsorption of Oleate Species on Calcium Fluoride”, Int. J. Miner. Process, 1 183-192, 1974.
82.S. Prakash, B. Das, J. K. Mohanty and R. Venugopal, “The Recovery of Fine Iron Minerals from Quartz and Corundum Mixtures Using Selective Magnetic Coating”, Int. J. Miner. Process, 57, 87-103, 1999.
83.R. A. Ross, R. Lemay, “Thermal and Spectroscopic Measurement of the Interactions Oleic Acid with Surfaces of Aluminum, Magnesium and Al-Mg Alloys, Surface Technology”, 26 125-136 1985.
84.R. G. Greenler, “Infrared Study of the Adsorption of Methanol and Ethanol on Aluminum Oxide”, J. Chem. Phys. 37, 2094-2100, 1962.
85.F. Rositani, P. L. Antonucci, M. Minutoli, N. Giordano, “Infrared Analysis of Carbon Blacks”, Carbon, 25 [3] 325-332 (1987).
86.M. Starsinic, R. L. Taylor, P. L. Walker, P. C. Painter, “FTIR Studies of Saran Chars”, Carbon, 21 [1] 69-74 (1983).
87.E. Papired, E. Guyon, N. Perol, “Contribution to the Study of the Surface Groups on Carbons-II Spectroscopic Methods,” Carbon, 16 133-140 1978.
88. M. N. Rahaman, Ceramic Processing and Sintering, Chapter 6, pp.322-328, Marcel Dekker, 1995.
89.賴耿陽,碳材料化學與工學,復漢出版社,民國八十八年。
90.B. C. Lippens and J. J. Steggerda, Active Alumina, in Physical and Chemical Aspects of Adsorbents and Catalysism B. G. Linsen Ed., Academic Press, New York, 1970.
91.S. R Ramanathan, S. K. Bhat, R. Upadhyaya and D. D. Biswas, “Preparation and Characterisation of Boehmite Precursor and Sinterable Alumina Powder from Aqueous Aluminium Chloride-urea Reaction”, J. Alloys Comp., 39-44 October 15, 1996.
92.J. Nordin, P. Persson, A. Nordin, and S. Sjöberg “Inner-Sphere and Outer-Sphere Complexation of a Polycarboxylic Acid at the Water-Boehmite (��-AlOOH) Interface: A Combined Potentiometric and IR Spectroscopic Study”, J. Am. Chem. Soc., 14(13), 3655-3662, 1998.
93.C. J. Brinker and G. w. Scherer, “Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing”, Academic Press, Boston, 1990.
94.B. E. Yoldas, “Alumina Gels That Form Porous Transparent Al2O3”, J. Mater. Sci., 10, 1856-1860, 1975.
95.歐陽允亮,陳化處理對於ZTA超微粉末特性研究,國立成功大學資源工程學系,碩士論文,中華民國84年6月。
96.H. Elderfield and J. D. Hem, “The Development of Crystalline Structure in Aluminum Hydroxide Polymorphs on Aging”, Miner. Magazine, 39, 89-96, 1973.
97.K. Schonert, Physical and Technical Aspects of Very and Micro Fine Grinding, Proceeding of Second World Congress of Particle Technology, Kyoto, Japan, pp.257-271, 1990.
98.B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London, 1978.
99.Y. Arai, Chemistry of Powder Production, Chapman and Hall, London, 1996.
100.B. David, C. Williams and B. Carter, Transmission Electron Microscopy P.271 1996.
101.溫惠玲,由Boehmite製得之氧化鋁粉末的�寣���-Al2O3杷轉換,,國立成功大學資源工程學系,博士論文,中華民國89年1月。
102.D. D. Macdonald, P. Butler and D. Owen, “Hydrothermal Hydrolysis of Al3+ and the Precipitation of boehmite from Aqueous Solution”, J. Phys. Chem. 77, 2474-2479, 1973.
103.F. Trolard and Y. Trady, “The Stabilities of Gibbsite, Boehmite, Aluminous Goethities and Aluminous Hematites in Bauxites, Ferrcretes and Laterties as a Function of Water Activity, Temperature, and Particles Size”, Geochim. Cosmochim. Acta. 51, 945-957, 1987.
104.N. S. Kuyunko, S. D. Malinin and I. L. Khodakovskiy, “An Experimental Study of Aluminum ion Hydrolysis at 150, 200 and 250oC”, Geokhimiya 3 419-48, 1983.
105.T. Mukaibo, Y. Takahshi and K. Yamada, “The Heat Capacity and Heat of Dehydration of the Hydrated Aluminas”, Proc. 1st Intl. Conf. on Calorimetry and Thermodynamics, Warsaw, Aug. 31-Sept. 4, pp.375-380, 1969.
106.W. L. Bourcier, K. G. Knauss and K. J. Jackson, “Aluminum Hydrolysis Constants to 250oC from Solubility Measurements”, Geochim. Cosmochim. Acta. 57, 747-762, 1993.
107.M. K. B. Day and V. J. Hill, “Thermal Transformations of the Aluminas and Their Hydrates”, J. Phys Chem, 57, 12, 946-950 1953.
108.J. S. Hu, M. Misa and J. D. Miller, “Characterization of Adsorbed Oleate Species at the Fluorite Surface by FTIR Spectroscopy”, Int. J. Miner. Process. 18, 73-84, 1986.
109.M. Kahn, “Effects of Sintering and Grain Growth on the Distribution of Niobium Addition in Barium Titanate Ceramics”, Ph.D. Thesis. Pennsylvania State University Park, PA, 1969.
110.B. S. Rawal, K. Kahn, and W. R. Buessem, “Grain Core-Shell Structure in Barium Titantate-Based Dielectrics”; pp. 172-188 in Advances in Ceramics, Vol. 1, Grain Boundary Phenomena in Electronic Ceramics. Edited by L. M. Levinson. American Ceramic Society, Columbus, OH, 1981.
111.D. Hennings and G. Rosenstein, “Temperature-Stable Dielectrics Based on Chemically Inhomogeneous BaTiO3”, J. Am. Ceram. Soc., 67 4 249-254, 1984.
112.T. R. Armstrong and R. C. Buchanan, “Influence of Core-Shell Grains on the Internal Stress Stress State and Permittivity Response of Zirconia-Modified Barium Titanate”, J. Am. Ceram. Soc., 73 5 1268-1273, 1990.
113.Y. Park and S. A. Song, “Influence of Core-Shell Structured Grain on Dielectric Properties of Cerium-Modified Barium Titanate”, J. Mater. Sci. 6 380-388, 1995.
114.鄭世裕等,奈米材料及檢測技術研討會-工研院材料所,國立中山大學半導體科技發展中心主辦,91年3月。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top