跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:涂家輝
研究生(外文):Chia-Huei Tu
論文名稱:異向性雙合成材料之破壞力學性質分析
論文名稱(外文):Fracture Mechanics Analysis of the Anisotropic Bi-material
指導教授:陳昭旭陳昭旭引用關係
指導教授(外文):Chao-Shi Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:188
中文關鍵詞:應力強度子異向性雙合成材料初始開裂角度邊界元素分析程式(BEM)傳播路徑
外文關鍵詞:initiation anglestress intensity factorsanisotropic bi-materialsboundary element method (BEM)propagation path
相關次數:
  • 被引用被引用:8
  • 點閱點閱:366
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

本研究以異向性線彈性理論配合雙合成材料之基本解、邊界積分方程式、裂縫尖端模式及最大張應力準則為理論基礎,藉以Fortran語言撰寫成BEM分析程式,其可成功的分析均向性及異向性雙合成材料,裂縫尖端之應力強度子、初始開裂角度與裂縫傳播路徑等裂縫開裂問題。為檢驗數值分析結果之可靠度,特別設計一雙合成材料巴西圓盤試體(水泥-石膏巴西圓盤,簡稱CG-Disk),進行混合模態載重之巴西試驗,並藉以高速攝影設備拍攝試體詳細破壞過程,以了解裂縫尖端動態行為及探討其破壞機制與裂縫傳播過程。其間發現實驗與BEM分析之比較結果非常吻合,且可成功地求得混合模態載重下裂縫尖端之應力強度因子與初始開裂角度,並證實本分析程式可準確預測裂縫實際之開裂與傳播行為。分析不同異向性程度之雙合成材料巴西圓盤,發現應力強度因子亦受材料異向性程度不同而有顯著的影響。
ABSTRACT

This study presents a single-domain boundary element method (BEM) for linear elastic fracture mechanics analysis in the 2-D anisotropic bi-material. In this formulation, the displacement integral equation is collocated on the uncracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. The complete fundamental solution (Green’s function) for anisotropic bi-materials was also derived and implemented into the boundary integral formulation so the discretization along the interface can be avoided except for the interfacial crack part. A special crack-tip element was introduced to capture exactly the crack-tip behavior. A computer program with the FORTRAN language has been developed to effectively calculate the stress intensity factors, crack initiation angle, and propagation path of an anisotropic bi-material. This BEM program has been verified having a good accuracy with the previous researches. In addition, a gypsum-cement disk (G-C disc) specimen with a central crack was made to conduct the Brazilian test under diametrical loading. The result shows that the numerical analysis can predict relatively well the direction of crack initiation and the path of crack propagation.
目 錄
頁次
摘要Ⅰ
AbstractⅡ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅷ
理論與實驗分析之符號定義XI

第一章 緒論1
1.1 研究背景與動機1
1.2 研究目的2
1.3 研究內容3

第二章 前人研究 6
2.1 破壞力學之發展史6
2.2 應力強度因子研究回顧15
2.3 圓形薄版之應力強度因子17
2.3.1 模態I之應力強度因子17
2.3.2 混合模態之應力強度因子 30
2.4 雙合成材料之應力強度因子相關文獻37

第三章 理論模式 57
3.1 異向性線彈性理論57
3.2 異向性雙合成材料之基本解62
3.3 具有裂縫之邊界積分方程式67
3.4 裂縫尖端模式70
3.4.1 位於均質材料的縫尖端70
3.4.2 接合面上之裂縫尖端72
3.5 裂縫之開裂與傳播76
3.5.1裂縫之初始開裂角度76
3.5.2 裂縫傳播79

第四章 分析程式之數值驗證 81
4.1 分析介紹81
4.2 裂縫元素之敏感度分析 85
4.3 數值案例之驗證分析89
4.3.1 單一材料之數值案例90
4.3.2 雙合成材料數值案例97
4.3.3 裂縫初始開裂角度之驗證107
4.3.4 小結110

第五章 實驗與結果分析 111
5.1 試體準備 114
5.1.1 試體模之設計 114
5.1.2 材料概述 117
5.1.3 製作步驟 119
5.1.4 試體類型劃分 129
5.2 儀器設備 131
5.2.1 載重系統及資料擷取系統131
5.2.2 高速攝影設備 134
5.3 材料之基本力學性質試驗 136
5.3.1 試驗介紹 136
5.3.2 彈性參數之試驗結果 141
5.3.3 強度之試驗結果 144
5.4 結果分析 147
5.4.1 石膏-水泥巴西圓盤之應力強度因子147
5.4.2 異向性雙合成材料圓盤之應力強度因子153
5.4.3 破壞荷重及破壞型式探討157
5.4.4 裂縫初始開裂角度162
5.4.5 高速攝影之剪影164
5.4.6 裂縫之傳播 169
5.4.7 異向性雙合成材料之傳播路徑 174

第六章 結論與建議176
6.1 結論176
6.2 建議178

參考文獻 180

附錄A 水泥-石膏圓盤試體CG-Disk之試驗結果A-1
參考文獻
1.柯建仲,異向性大理岩之破壞力學性質分析,國立成功大學資源工程學系碩士論文,(2000)。
2.Aliabadi, M. H., Fracture of Rock, WITpress, Boston, (1999)
3.Abdi, R. E., A special finite element for the analysis of the singularity in a biomaterial containing a crack perpendicular to the interface. Engineering Fracture Mechanics, Vol. 39, No. 6, pp. 1061-1065, (1991).
4.Atkinson, B. K., Fracture Mechanics of Rocks : Experimental fracture mechanics data of rock and minerals., Academic press, London, (1987).
5.Amadei, B., Rock Anisotropy and the Theory of Stress Measurements, Springer-Verlag, New York, (1983).
6.Atkinson, C., Smelser, R. E. and Sanchez, J., Combined mode fracture via the cracked Brazilian disk test. Int. J. Fracture, Vol. 18, No. 4, pp. 279-291, (1982).
7.Awaji, H. and Sato, S., Combined mode fracture toughness measurement by the disk test. J. Eng. Mater. Tech. Trans. ASME, Vol. 100, No. 4, pp. 175-182, (1978).
8.Bahar, L. Y., On an elastostatic problem in nonhomogeneous media leading to coupled dual integral equation. Ph.D dissertation, Department of Civil Eng., University of Lehigh, (1996).
9.Bhattacharya, J. P. and Walker, R. G., Facies Models Response to sea level change. Geol. Assoc. Canada., pp. 157-178, (1992).
10.Banerjee, P. K. and Butterfield, R., Boundary element methods in engineering science., McGraw-Hill, New York, (1981).
11.Brown, E. T., Rock characterization testing and monitoring : ISRM suggested methods, Pergamon press, Oxford, (1981).

12.Bieniawski, Z. T. and Hawkes, I., Suggested methods for determining tensile strength of rock materials. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 99-103, (1978)
13.Chen, C. S., Pan, E., and Amadei, B., Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 35, No. 2, pp. 195-218, (1998).
14.Chen, C. S., Characterization of deformability, strength, and fracturing of anisotropic rocks using Brazilian tests. Ph.D. thesis, Department of Civil Eng., University of Colorado,(1996).
15.Chen, C. S. and Hsu, J., The stress intensity factors of slightly undulating interface cracks of bimaterials. Int. J. Fracture, Vol. 80, pp. 277-293, (1996).
16.Cerrolaza, M. and Alarcon, E., A bi-cubic transformation for the numerical evaluation of the Cauchy principal value integrals in boundary methods. Int. J. Numer. Methods Engng., Vol. 28, pp. 987-999, (1989).
17.Christensen, R.M. and Wu, E.M., A theory of crack growth in viscoelastic materials. Engineering Fracture Mechanics, Vol.14, pp. 215–225., (1981).
18.Comninou, M. and Dundurs, J., On the behaviour of interface crack, Research Mechanica, pp. 249-264, (1980).
19.Christensen, R.M., A rate-dependent criterion for crack growth. International Journal of Fracture, Vol. 15(1), pp. 3–21. (1979).
20.Comninou, M. and Schmueser, D., The interface crack in a combined tension-compression and shear field. Trans. ASME, J. Appl. Mech. Vol. 46, pp. 345-348, (1979)
21.Cherepanov, G. P., Mechanics of Brittle Fracture, McGraw-Hill, New York, (1979)
22.Comninou, M., The interface crack. Trans. ASME, J. Appl. Mech. Vol. 44, pp. 631-636, (1977).
23.Cook, T. S. and Erdogan, F., Stresses in bonded materials with a crack perpendicular to the interface. Int. J. Engng Sci., Vol. 10, pp. 677-697, (1972).
24.Elliott, T., Sedimentary environments and facies. Blackwell, pp. 113-154, (1986).
25.England, A. H., A crack between dissimilar media. Trans. ASME, J. Appl. Mech. Vol. 32, pp. 400-402, (1965).
26.Erdogan, F. and Sih, G. C., On the crack extension in plates under loading and transverse shear. J. Basic Eng., Vol. 85, pp. 519-527, (1963).
27.Erdogan, F., Stress distribution in bonded dissimilar materials with crack. Trans. ASME, J. Appl. Mech., Vol. 32, pp. 403-410, (1959).
28.Fischer M. P., Elsworth, D., Alley, R. B. and Engelder, T., Finite element analysis of the modified ring test for determining mode I fracture toughness. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 33, No. 1, pp. 1-15, (1996).
29.Fowell, R. J. and Xu, C., The use of the cracked Brazilian disc geometry for rock fracture investigations. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 31, No. 6, pp. 571-579, (1994).
30.Guo, H., Aziz, N. I. and Schmidt, L. C., Rock fracture-toughness determination by the Brazilian test. Engineering Geology., Vol. 33, pp. 177-188, (1993).
31.Gao, H., Abbudi, M. and Barnett D. M., Interfacial crack-tip field in anisotropic elastic solids. J. Mech. Phys. Solids, Vol. 40, pp. 393-416, (1992).
32.Gramberg, J., A Non-conventional View on Rock Mechanics and Fracture Mechanics, Published of the Commission of the European Communities by A. A. Balkema, Rotterdam, (1989).
33.Gandhi, K. R., Analysis of inclined crack centrally placed in an orthotropic rectangular plate. J. Strain analysis, Vol. 7, No. 3, pp. 157-162, (1972).
34.Griffith, A. A., The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. London, Series A, Vol. 221, pp. 163-198, (1920).
35.Hamoush, S. A. and Ahmad, S. H., Mode I and mode II stress intensity factors for interfacial cracks in bi-material media. Engineering Fracture Mechanics, Vol. 33, No. 3, pp. 421-427, (1989).
36.Hutchinson, J. W., Mear, M. E., and Rice, J. R., Crack paralleling an interface between dissimilar materials. Trans. ASME, J. Appl. Mech., Vol. 54, pp. 828-832, (1987).
37.Huang, C. Y. and Cheng, Y. M., Oligocene and Miocene planktic foraminiferal biostratigraphy of northern Taiwan. Proc. Geol. Soc. China., Vol. 26, pp. 21-56, (1983).
38.Hondros, G., The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (Indirect tensile) test with particular reference to concrete. Aust. J. App. Sci., Vol. 10, pp. 428-434, (1959).
39.Isida, M. and Noguchi, H., Formulae of stress intensity factors of branched cracks in plane problems. Trans. Japan Soc. Mech. Engrs., Vol. 49, No. 440, pp. 469-479, (1983).
40.Isida, M. and Noguchi, H., Plane elastostatic problems of bonded dissimilar materials with an interface crack and arbitrarily located cracks. Trans. Japan Soc. Mech. Engrs., Vol. 49, pp. 137-146, (1983).
41.Isida, M. and Noguchi, H., Plane problems of arbitrarily oriented cracks in bonded dissimilar materials. Trans. Japan Soc. Mech. Engrs., Vol. 49, pp. 36-45, (1983).
42.Isida, M., Analysis of stress intensity factors of plate with a arbitrary array crack and bent crack. Trans. Japan Soc. Mech. Engrs., Vol. 44, No. 380, pp. 1122-1133, (1978).

43.Isida, M., Arbitrary loading problems of doubly symmetric regions containing a central crack. Engineering Fracture Mechanics, Vol. 7, pp. 505-514, (1975).
44.Irwin, G. R., Analysis of stresses and strains near the end of a crack. Trans. ASME, J. Appl. Mech., Vol. 24, pp. 361-364, (1957).
45.Inglis, C., Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Architects, Vol. 55, pp. 219-241, (1913).
46.Kirsch, G., Die theorie der elastizitat und die bedurfnisse der festigkeitslehre, Veit. Ver. Deut. Ing., Vol. 42, pp. 797-807, (1898).
47.Kirsch, G., Z. Verein Deutscher Ing. (VDI), Vol. 42, pp.113 (1898).
48.Kasano, H., Watanabe, T., Matsumoto, H., and Nakahara, I., Singular stress fields at the tips of a crack normal to the bimaterial interface of isotropic and anisotropic half planes. Trans. Japan Soc. Mech. Engrs., Vol. 52, No. 476, pp. 933-939, (1986).
49.Kaya, A. C. and Erdogan, F., Stress intensity factors and COD in an orthotropic strip. Int. J. Fracture, Vol. 16, No. 2, pp. 171-190, (1980).
50.Lahiri, S., Sankar, B. V., and Mataga, P. A., Evaluation of biomaterial stress intensity factors using a finite element-boundary element alternating method. Engineering Fracture Mechanics, Vol. 53, No. 2, pp. 289-302, (1996).
51.Lee, K. Y. and Choi, H. J., Boundary element analysis of stress intensity factors for biomaterial interface cracks. Engineering Fracture Mechanics, Vol. 29, No. 4, pp. 461-472, (1988).
52.Libatskii, L. L. and Kovchik, S. E., Fracture of discs containing cracks. Soviet Materials Science, Vol. 3, No. 4, pp. 334-339, (1967)
53.Lekhnitskii, S. G., Theory of elasticity of an anisotropic elastic body. translated by P. Fern, Holden-Day Inc., San Francisco, (1963).
54.Lekhnitskii, S. G., Anisotropic plates, translated by S.W. Tsai, Gordon and Breath, (1957).
55.Murakami, Y., A simple procedure for the accurate determination of stress intensity factors by finite element method. Engineering Fracture Mechanics, Vol. 8, pp. 643-655, (1976).
56.Malyshev, B. M. and Salganik, R. L., The strength of adhesive joints using the theory fracture. Int. J. Fracture, Vol. 1, pp. 114-128, (1965).
57.Muskhelishvili, N. I., Some basic problems of the mathematical theory of elasticity. Translated by J.R.M. Redok, Noordhoff (1953)
58.Nengquan, L., Nicholas, J., Altiero, N. J., Sur, U., An alternative integral equation approach applied to kinked cracked in finite plane bodies. Comp. Methods in Appl. Mech. and Eng., Vol. 84, pp. 211-226,(1990).
59.Prabhakar, R. M. and Hareesh, V. T., Numerical analysis of crack-tip fields in functionally graded materials with a crack normal to the elastic gradient. International Journal of Solids and Structures, Vol. 37, pp. 5353-5370, (2000)
60.Pan, E. and Amadei, B., Boundary element analysis of fracture mechanics in anisotropic bimaterials. Engineering Analysis with Boundary Elements, Vol. 23, pp. 683-691, (1999).
61.Palaniswamy, K. and Knauss, W. G., Propagation of a crack under general, in-plane tension. Int. J. Fracture, Vol. 8, pp. 114-117, (1972).
62.Raveendra, S. T. and Banerjee, P. K., Computation of stress intensity factors for interfacial cracks. Engineering Fracture Mechanics, Vol. 40, No. 1, pp. 89-103, (1991).
63.Rice, J. R., Elastic fracture mechanics concepts for interfacial crack. Trans. ASME, J. Appl. Mech., Vol. 55, pp. 98-103 (1988).
64.Richard, H. A., Examination of brittle fractured criteria for overloapping mode I and mode II loading applied to cracks. In Application of Fracture Mechanics to Materials and Structures. ed. G. C. Sih et al. Martinus Nijhoff Pub., The Hague, pp. 309-316, (1984).

65.Rooke, D. P. and Tweed, J., The stress intensity factors of a radial crack in a point loaded disc. Int. J. Engng. Sci., Vol. 11, pp. 285-290, (1973).
66.Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans. ASME, J. Appl. Mech., Vol. 35, pp. 379-386, (1968).
67.Rizzo, F. J., An integral approach to boundary value problems of classical elastostatics. Q. appl. Math., Vol. 25, pp. 83-95, (1967).
68.Rice, J. R. and Sih, G., Plane problems of cracks in dissimilar media. Trans. ASME, J. Appl. Mech., Vol. 32, pp. 418-423, (1965).
69.Soh, A. K., An improved photo-elastic technique for determining the mixed-mode stress-intensity factors for interfacial cracks in a bi-material. Composites Science and Technology, Vol. 59, pp. 1033-1039, (1999).
70.Sollero, P., Aliabadi, M. H. and Rooke, D. P., Anisotropic analysis of crack emanating from circular holes in composite laminates using the boundary element method. Engineering Fracture Mechanics, Vol. 49, No. 2, pp. 213-224, (1994).
71.Suo, Z., Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc. Lond. A, Vol. 427, pp. 331-358, (1990).
72.Singh, D. and Shetty, D., Fracture toughness of polycrystalline ceramics in combined mode I and mode II loading. J. Am. Ceram. Soc., Vol. 72 No. 1, pp. 78-84, (1989).
73.Schapery, R.A. A theory of crack initiation and growth in viscoelastic media – Parts I, II, III. International Journal of Fracture. Vol.11, pp.141-159, 369-388, 549-562. (1975).
74.Sih, G. C., Strain-energy density factor applied to mixed mode crack problems. Int. J. Fracture, Vol. 10, No. 3, pp. 305-321, (1974).

75.Sih, G. C., Handbook of Stress Intensity Factors, Inst. Of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pennsylvania, (1973).
76.Sih, G. C., Paris, P. C. and Irwin, G. R., On cracks in rectilinearly anisotropic bodies. Int. J. Fracture, Vol. 3, pp. 189-203, (1965).
77.Sih, G. C., Paris, P. C. and Erdogan, F., Crack tip stress-intensity factors for plane bending problems. Trans. ASME, J. Appl. Mech, Vol. 29, pp. 306-312, (1962).
78.Ting, T. C. T., Anisotropic elasticity:theory and application, University Press, New York: Oxford, (1996).
79.Tsamasphyros, G. and Dimou, G., Gauss quadrature rules for finite part integrals. Int. J. Numer. Methods Engng, Vol. 30, pp. 13-26, (1990).
80.Tan, C. L. and Gao, Y. L., Treatment of biomaterial interface crack problems using the boundary element method. Engineering Fracture Mechanics, Vol. 36, No. 6, pp. 919-932, (1990).
81.Tada, H., Paris, P. C. and Irwin, G. R., The Stress Analysis of Cracks, Handbook, Del Research Corporation., (1987).
82.Timoshenko, S. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York, N. Y., (1970).
83.Vallejo, L. E., The brittle and ductile behavior of a material containing a crack under mixed-mode loading. Proc. 28th U.S. Symp. Rock Mech., University of Arizona, Tucson, pp.383-390, (1987)
84.Vutukuri, V. S., Lama, R. D. and Saluja, S. S., Handbook on mechanical properties of rocks. Vol. I, (1974).
85.Whittaker, B. N., Singh, R. N. and Sun, G., Rock Fracture Mechanics :Principles, Design and Applications., Elsevier, New York, (1992).
86.Woo, C. W. and Wang, Y. H., Analysis of an edge crack in a finite bi-material plate. Engineering Fracture Mechanics, Vol. 42, No. 2, pp. 289-297, (1992).

87.Wu, K. C., Stress intensity factor and energy release rate for interfacial cracks between dissimilar anisotropic materials. Trans. ASME, J. Appl. Mech, Vol. 57, pp. 882-886, (1990).
88.Woo, C. W. and Ling, H. L., On angle crack initiation under biaxial loading. J. Strain Anal., Vol. 19, pp. 51-59, (1984).
89.Williams, M. L., The stresses around a faule or crack in dissimilar media. Bulletin of Seismological Society of America, Vol. 49, No. 2, pp. 199-204, (1959).
90.Williams, M. L., Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech., Vol. 19, pp. 526-528, (1952)
91.Westergaard, H., Bearing pressures and cracks. Journal of Applied Mechanics, Vol. 61, pp. 49-53, (1939).
92.Yuuki, R. and Cho, S. B., Efficient boundary element analysis of stress intensity factors for interface cracks in dissimilar materials. Engineering Fracture Mechanics, Vol. 34, pp. 179-188, (1989).
93.Yuuki, R. and Kitagawa, H., Stress intensity factors for branched cracks in a two-dimensional stress state. Trans. Japan Soc. Mech. Engrs., Vol. 41, No. 346, pp. 1641-1649, (1975).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top