1.Peason, T. G., The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London, 1955.
2.Badkar, P. A. and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mat. Sci., 11 1794-1806 (1976).
3.Chou, C. and T. G. Nieh, “Interface-controlled Phase Transformation and Abnormal Grain Growth of α-Al2O3 in Thin γ-Alumina Films,” Thin Solid Films, 221 89-97 (1992).
4.McArdle, J. L. and G. L. Messing, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69 C98-101 (1986).
5.Nieh, T. G., C. M. McNally, and J. Wadsworth, “Superplasticity in Intermetallilc Alloys and Ceramics,” JOM, 41 31-35 (1989).
6.McArdle, J. L. and G. L. Messing, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69 C98-101 (1986).
7.Chou, T. C. and T. G. Nieh, “Interface-controlled Phase Transformation and Abnormal Grain Growth of α-Al2O3 in Thin γ-Alumina Films,” Thin Solid Films, 221 89-97 (1992).
8.Wen, H. L. and F. S. Yen, “Growth Characteristics of Boehmite-Derived Ultrafine theta and alpha-Alumina Particles During Phase Transformation,” J. Cryst Growth, 208 696-708 (2000).
9.Chang, P. L., F. S. Yen, K C. Cheng, and H. L. Wen, “Examination on the Critical and Primary Crystallite Sizes during θ- to α-Phase Transformation of Ultrafine Alumina Powders,” Nano Letters, 5 253-261 (2001).
10.羅慧珊,“添加α-Al2O3晶種對Boehmite合成奈米級氧化鋁粉末之θ→α-Al2O3相轉換影響之研究”,國立成功大學資源工程研究所,碩士論文,中華民國88年6月。11.Chase, Jr. M. W., C. A. Davies, J. R. Downey jr., Fruip. R. R. McDonald, A. N. Syverud, JANAF Termodynamical Tables, 3rded., Am. Chem. Co., Washington, DC.
12.Wilson, S. J. and J. D. C. Mc Connell, “A Kinetic Study of the Systemγ-AlOOH/Al2O3,” J. Solid State Chemistry, 34 315-322 (1980).
13.Nishio, T. and Y. Fujiki, “Phase Transformation Kinetics of Precursor Gel to α-Alumina,” J. Mater. Sci., 29 (1994) 3408-3414.
14.Tijburg, I. M., H. D. Bruin, P. A. Elberse, and W. Geus, “Sintering of Pseudo-boehmite and γ-Al2O3,” J. Mater. Sci., 26 5945-499 (1991).
15.Dynys, F. W. and W. Halloran, “Alpha Alumina Formation in Alum-Derived Gama Alumina,” J. Am. Ceram. Soc., 65 [9] 422-48 (1982).
16.Wynnyckyj, J. R. and C. G. Morris, “A Shear-Type Allotropic Transformation in Alumina,” Metall. Trans. B., 16B 345-53 (1985).
17.Kachi, S., K. Momiyama, and S. Shimizu, “An Electron Diffraction Study and a Theory of Transformation from g–Fe2O3 to a–Fe2O3,” J. Phys. Soc. Jpn., 18 106-116 (1963).
18.Kingery, W. D., H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, New York, 2nd Ed., 1976.
19.吳毓純,“氧化鋁微粉的θ到α相轉換與燒結”,國立成功大學資源工程研究所,碩士論文,中華民國87年8月。20.溫惠玲,“由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換”,國立成功大學資源工程研究所,博士論文,中華民國89年1月。21.Yen, F. S., H. L. Wen, and Y. T. Hsu, “Crystallite Size Growth and the Derived Dilatometric Effect during θ- to α-phase Transformation of Nano-sized Alumina Powders,” J. Cryst Growth, 233 761-773 (2001).
22.Yen, F. S., J. L. Chang, and P. C. Yu, “Relationships between DTA and DIL Characteristics of Nano-sized Alumina Powders during θ- to α-phase Transformation,” J. Cryst Growth, (2002 accepted).
23.Putnis, A., Introduction to Mineral Sciences, Cambridge University Press, 1992.
24.Putnis, A. and J. D. C. McConnell, Principles of Mineral Behaviour, Elsevier, New York, 1980.
25.Bamford, C. H. and C. F. H. Tipper, Reactions in the Solid State, Comprehensive Chemical Kinetics, Vol.22, Else. Sci. Pub. Co., New York, 1980.
26.Malow, T. R. and C. C. Koch, “Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition,” Acta mater, 45 [5] 2177-2186 (1997).
27.Shek, C. H., J. K. L. Lai and G. M. Lin, “Grain Growth in Nanocrystalline SnO2 Prepared by Sol-Gel Route,” NanoStruct. Mat., 11 [7] 887-893 (1999).
28.Ozawa, T., “Kinetic Analysis of Derivative Curves in Thermal Analysis,” J. Thermal Anal., 2 [3] 301-324 (1970).
29.Steiner, C. J. P., D. P. H. Hasselman, and R. M. Spriggs, “Kinetics of the Gamma-to-Alpha Alumina Phase Transformation,” J. Am. Ceram. Soc., 54 [8] 412-413 (1971).
30.Kao, H. C. and W. C. Wei, “Kinetics and Microstructural Evolution of Heterogeneous Transformation of θ-Alumina to α-Alumina,” J. Am. Ceram. Soc., 83 [2] 362-368 (2000).
31.Nordahl, C. S. and G. L. Messing, “Thermal Analysis of Phase Transformation Kinetics inα- Al2O3 Seeded Boehmite andγ-Al2O3,” Thermochimica Acta, 318 187-199 (1998).
32.Nishio, T. and Y. Fujiki, “Phase Transformation Kinetics of Precursor Gel to α-Alumina,” J. Mater. Sci., 29 3408-3414 (1994).
33.Bagwell, R. B. and G. L. Messing, “Effect of Seeding and Water Vapor on the Nucleation and Growth of α- Al2O3 from γ-Al2O3,” J. Am. Ceram. Soc., 82 [4] 825-832 (1999).
34.Wilson, S. J. and J. D. C. Mc Connell, “A Kinetic Study of the Systemγ-AlOOH/Al2O3,” J. Solid State Chemistry, 34 315-322 (1980).
35.Shelleman, R. A., G. L. Messing, and M. Kumagai, “Alpha Alumina Transformation in Seeded Boehmite Gels,” J. Non-Cryst. Solids, 82 277-285 (1986).
36.Clark, P. W. and J. White, “Some Aspects of Sintering,” Trans. Brit. Ceram. Soc., 49 305-333 (1950).
37.Ozawa, M. and M. Kimura, “Effect of Cerium Addition on the Thermal Sablity of Gamma Alumina Support,” J. Mater. Sci. Lett., 9 291-293 (1990).
38.Urretavizcaya, G. and J. M. Porto Lopez, “Thermal Transformation of Sol-Gel Alumina intoα-phase. Effect of α- Al2O3 Seeding,” Mater. Res. Bull., 27 [4] 375-385 (1992).
39.Kato, E., K. Daimon, and M. Nanbu, “Decomposition of Two Aluminum Sulfates and Characterization of the Resultant Aluminas,” J. Am. Ceram. Soc., 64 [8] 436-445 (1981).
40.Kissinger, H. E., “Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis,” J. Res. Nat. Bur. Stds., 57 [4] 217-221 (1956).
41.Borchardt, H. J. and F. Daniels, “The Application of Differential Thermal Analysis to the Study of Reaction Kinetics,” J. Am. Chem. Soc., 79 [1] 41-46 (1957).
42.Freeman, E. S. and B. Carroll, “The Application of Thermoanalytical Techniques to Reaction Kinetics. The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate,” J. Phys. Chem., 62 [4] 394-397 (1958).
43.Coats, A. W. and H. P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature (London), 201 [1] 68-69 (1964).
44.Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London, 1978.
45.Mutsuddy, B. C. and R. G. Ford, Ceramic Injection Molding, Materials Technology Series, 1sted, Chapman and Hall, New York, 1995.
46.劉惠宏,“θ-Al2O3晶徑對θ至α-Al2O3相轉換過程的熱行為影響觀察”,國立成功大學資源工程研究所,碩士論文,中華民國87年9月。47.Niesz, D. E. and R. B. Bnnett, “Structure and Properties of Agglomerates,” 61-73, in Ceramic Processing before Firing, Edited by G. Y. Onoda. Jr. and L. L. Hench, Wiley, New York, 1978.
48.Lange, F. F., “Sinterability of Agglomerated Powders,” J. Am. Chem. Soc., 67 [2] 83-89 (1984).
49.Li, J. G. and X. Sun, “Synthesis and Sintering Behavior of a Nanocrystalline α-Alumina Powder,” Acta Mater., 48 3103-3112 (2000).
50.許宇嬋,“微粒θ-與α-Al2O3混合粉末的熱反應”,國立成功大學資源工程研究所,碩士論文,中華民國90年7月。51.Yen, F. S., M. Y. Wang and J. L. Chang, “Temperature Reduction of θ- to α-Phase Transformation induced by High-Pressure Pretreatment of Nano-sized Alumina Powders Derived from Boehmite,” J. Cryst Growth, 236 197-209 (2002).