(34.201.11.222) 您好!臺灣時間:2021/02/25 05:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張俊龍
研究生(外文):Jiun-Long Chang
論文名稱:奈米級氧化鋁粉末θ至α的相轉換活化能研究
論文名稱(外文):Investigation on Activation Energy of θ- to α-Phase Transformation of Nano-Sized Alumina Powders
指導教授:顏富士顏富士引用關係
指導教授(外文):Fu-Su Yen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:67
中文關鍵詞:奈米材料氧化鋁相轉換活化能
外文關鍵詞:nanomaterialsaluminaactivation energyphase transforamtion
相關次數:
  • 被引用被引用:14
  • 點閱點閱:295
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:0
本研究藉由以往觀察θ→α-Al2O3相轉換過程的機制,依據等溫試驗的活化能分析原理,探討該相轉換過程所包含的(1)θ-晶粒成長、(2)θ-臨界晶粒轉換成α-核晶、(3)α-核晶聚合成長達基礎晶粒dp-Al2O3等各階段的活化能。實驗以三種凝聚程度較低,平均晶徑不同的θ-Al2O3粉末(S、M和L),採用三種不同的溫度持溫熱處理進行等溫試驗。所得樣品,則個別分析其θ-Al2O3的平均晶徑、α-Al2O3及dp-Al2O3的生成量以與時間建立關係。藉Grain growth與JMA速率式,觀察θ-晶粒成長與相轉換活化能,相轉換過程的α-核晶生成與聚合成長活化能,由Exponential rate law及連續一階反應理論分析,另由此等結果分析影響個別階段活化能所存在的影響因素。
分析主要影響相轉換活化能的因素,應為θ-晶粒的大小與各晶粒間的空間分佈(距離)。二者影響θ-晶粒的成長過程及後續的相轉換各階段動作會不一致。
反之如一θ-粉體系統中所有的θ-晶粒均可同時發生θ至α相轉換,也即系統中之θ-晶粒皆可同時或已達相轉換臨界晶徑,則α-核晶可同時出現,α-核晶聚合成長至基礎晶徑也可同時發生,則可獲致粒徑均一的α-Al2O3晶粒,而此條件也使相轉換活化能降至最低。
分析各階段的活化能可發現:θ-晶粒成長的活化能,隨起始θ-粉末的平均晶徑之變大而升高。原因可能有二,一為粗θ-晶粒受熱驅動擴散較細θ-晶粒不易,另一則是粗θ-晶粒粉末中,部分先達成相轉換臨界晶徑的θ-晶粒將先相轉換,這些早出現的α-Al2O3晶粒有阻礙θ-晶粒的成長現象,因而粗θ-晶粒系統的θ-晶粒其成長活化能變高。推測此影響因素在粉末愈細時,漸不明顯。當θ-晶粒為11 nm時,其成長活化能約為81 kJ/mol。
由等溫及非等溫的試驗結果發現,α-核晶的生成活化能隨起始θ-粉末系統的平均晶徑之趨近相轉換臨界晶徑而降低。此原因係粗的起始θ-粉末有較多接近相轉換臨界晶徑的θ-晶粒,可省去θ-晶粒成長階段所需的能耗即發生相轉換。在由一顆達臨界晶徑的θ-晶粒轉換為一顆α-核晶的活化能約為85 kJ/mol。而由α-核晶聚合成長至基礎晶粒的活化能,如發生於θ-晶粒皆為相轉換臨界晶徑之條件下為215 kJ/mol。
探究真實θ-粉體系統在相轉換過程的孕核與聚合成長活化能,發現各階段都會受其前一階段已產生結果的影響;θ-晶粒成長為臨界晶徑的結果影響α-核晶生成的活化能;同樣α-核晶間的距離影響聚合的活化能。另外θ-臨界晶粒(dcθ)的達成速率(即α-核晶的生成速率),也可能為聚合成長的另一影響因素,將使活化能改變。觀察α-核晶生成及α-核晶聚合成長至基礎晶徑的個別段的活化能大小,若無阻礙反應的因素存在,當有足量的α-核晶生成時,聚合成長應可旋即發生。因此,亦說明θ→α-Al2O3相轉換的控制步驟,可能需視原始粉末的θ-晶粒的大小與其空間分佈關係而定。
本研究推測在θ→α-Al2O3相轉換出現的三個階段,其活化能數值分別為:θ-晶粒成長至臨界晶徑的活化能:81∼114 kJ/mol、θ-臨界晶粒轉換成α-核晶的活化能:85∼130 kJ/mol、α-核晶聚合成長至基礎晶徑的活化能:215 kJ/mol(但各階段的實際值可能較上述推測值更低)。整體的相轉換活化能應為380∼460 kJ/mol。
細的θ-Al2O3粉體提供系統接近類均質孕核反應,但θ-晶粒成長需消耗較多的能量。而粗的θ-Al2O3粉體系統,相轉換能量低,卻受制於反應時間無法集中發生。因此,控制反應過程於時間及空間的一致性,為製備均一晶徑的奈米級(~50 nm)α-Al2O3粉末的重要關鍵。
The activation energy of θ- to α-Al2O3 phase transformation of well-dispersed θ-Al2O3 powder systems from derived boehmite was investigated in this study. The phase transformation are subdivided into three stages: (1) growth of θ-crystallite, (2) one θ-crystal transforms to oneα-crystal and (3) the growth of α-crystal. Calculation of activation energy than based on isothermal models of Grain growth, JMA and Exponential rate equation, and the results are 81∼114, 85∼130 and 215 kJ/mol, for (1), (2) and (3) stages, respectively. The total activation energy of the phase transformation is estimated amounting to 380∼460 kJ/mol.
The activation energy for θ-crystallite growth increases as the θ-crystallite’s size coarsening. This is because it is difficult for the coarse θ-crystallite to diffusion during the thermal treatment compared with that of the smaller size θ-crystallite. Additionally, the α-Al2O3 particles transformed earlier from the coarser θ-crystallites would retard the θ-crystallite growth. It is found, starting θ-crystallites size with 11 nm would show lowest activation energy of θ-crystallite being ∼81 kJ/mol.
The activation energy of α-nucleus formation was decreased as the θ-crystallite close to θ-critical size. It is because the existence of large amounts of coarser θ-crystallite, may save the energy consumption that requires for the crystallite growth of the θ-powder system.
The activation energies of α-nucleus formation and the dp-crystallite formation from α-nuclei may highly related to the agglomeration state of the starting θ-crystallites, because the inter-crystallite distance affects the growth of θ-crystallite as well as the coalescence of dp-crystallite from the previously formed α-nuclei. When the number of α-nuclei is sufficient then a dp-crystallite will occur immediately if the reaction can take place freely.
Although, it is more possible for θ-Al2O3 powder systems with finer crystallite sizes to obtain, a quasi-homogeneous reaction during θ- to α-phase transformation, it needs more energy consumption for θ-crystallite growth. Contrarily θ-powder systems with coarser sizes will show low activation energy of phase transformation, but the reaction can heterogeneous. Thus, how to obtain the reaction of θ→α-Al2O3 phase transformation through homogenous reaction at a low activation energy of reaction is the key point to fabricate nano-sized α-Al2O3 powders.
摘要Ⅰ
AbstractⅢ
致謝Ⅴ
表目錄Ⅷ
圖目錄Ⅸ
附錄ⅩⅢ

第一章 緒論1
1.1 前言1
1.2 研究目的2

第二章 理論基礎與前人研究4
2.1 θ→α-Al2O3相轉換4
2.1.1 Ostwald ripening的晶粒粗化現象4
2.1.2 成核成長理論6
2.1.3 臨界晶徑與基礎晶徑6
2.2 非均質與類均質的相轉換7
2.2.1 相轉換的示差熱行為7
2.2.2 相轉換的維差特性10
2.3 相轉換動力學12
2.3.1 晶粒成長反應速率式12
2.3.2 相轉換反應速率式13
2.3.3 θ→α-Al2O3相轉換活化能15

第三章 研究方法及步驟19
3.1 實驗原料19
3.2 實驗步驟20
3.3 特性分析20
3.3.1 粉末結晶相分析20
3.3.2 熱差分析20
3.3.3 晶徑及粒徑分析20
3.3.4 相轉換定量分析23
3.3.5 顯微影像及結構分析23
3.3.6 臨界晶徑及基礎晶徑數含量比例計算23

第四章 結果與討論25
4.1 粉末的結晶相分析25
4.2 酒精研磨的解凝效應25
4.3 θ-Al2O3的晶粒成長機制及活化能30
4.3.1 θ-Al2O3晶粒的粗化模式30
4.3.2 Grain growth速率式觀察θ-Al2O3成長活化能34
4.4 θ→α-Al2O3的相轉換活化能38
4.4.1 JMA速率式觀察相轉換活化能43
4.4.2 Exponential rate law觀察α-核晶生成及聚合成長活化能47
4.5 綜合討論58
第五章 結論60
參考文獻62
附錄67
1.Peason, T. G., The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London, 1955.
2.Badkar, P. A. and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mat. Sci., 11 1794-1806 (1976).
3.Chou, C. and T. G. Nieh, “Interface-controlled Phase Transformation and Abnormal Grain Growth of α-Al2O3 in Thin γ-Alumina Films,” Thin Solid Films, 221 89-97 (1992).
4.McArdle, J. L. and G. L. Messing, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69 C98-101 (1986).
5.Nieh, T. G., C. M. McNally, and J. Wadsworth, “Superplasticity in Intermetallilc Alloys and Ceramics,” JOM, 41 31-35 (1989).
6.McArdle, J. L. and G. L. Messing, “Seeding with γ-Alumina for Transformation and Microstructure Control in Boehmite-Derived α-Alumina,” J. Am. Ceram. Soc., 69 C98-101 (1986).
7.Chou, T. C. and T. G. Nieh, “Interface-controlled Phase Transformation and Abnormal Grain Growth of α-Al2O3 in Thin γ-Alumina Films,” Thin Solid Films, 221 89-97 (1992).
8.Wen, H. L. and F. S. Yen, “Growth Characteristics of Boehmite-Derived Ultrafine theta and alpha-Alumina Particles During Phase Transformation,” J. Cryst Growth, 208 696-708 (2000).
9.Chang, P. L., F. S. Yen, K C. Cheng, and H. L. Wen, “Examination on the Critical and Primary Crystallite Sizes during θ- to α-Phase Transformation of Ultrafine Alumina Powders,” Nano Letters, 5 253-261 (2001).
10.羅慧珊,“添加α-Al2O3晶種對Boehmite合成奈米級氧化鋁粉末之θ→α-Al2O3相轉換影響之研究”,國立成功大學資源工程研究所,碩士論文,中華民國88年6月。
11.Chase, Jr. M. W., C. A. Davies, J. R. Downey jr., Fruip. R. R. McDonald, A. N. Syverud, JANAF Termodynamical Tables, 3rded., Am. Chem. Co., Washington, DC.
12.Wilson, S. J. and J. D. C. Mc Connell, “A Kinetic Study of the Systemγ-AlOOH/Al2O3,” J. Solid State Chemistry, 34 315-322 (1980).
13.Nishio, T. and Y. Fujiki, “Phase Transformation Kinetics of Precursor Gel to α-Alumina,” J. Mater. Sci., 29 (1994) 3408-3414.
14.Tijburg, I. M., H. D. Bruin, P. A. Elberse, and W. Geus, “Sintering of Pseudo-boehmite and γ-Al2O3,” J. Mater. Sci., 26 5945-499 (1991).
15.Dynys, F. W. and W. Halloran, “Alpha Alumina Formation in Alum-Derived Gama Alumina,” J. Am. Ceram. Soc., 65 [9] 422-48 (1982).
16.Wynnyckyj, J. R. and C. G. Morris, “A Shear-Type Allotropic Transformation in Alumina,” Metall. Trans. B., 16B 345-53 (1985).
17.Kachi, S., K. Momiyama, and S. Shimizu, “An Electron Diffraction Study and a Theory of Transformation from g–Fe2O3 to a–Fe2O3,” J. Phys. Soc. Jpn., 18 106-116 (1963).
18.Kingery, W. D., H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, John Wiley & Sons, New York, 2nd Ed., 1976.
19.吳毓純,“氧化鋁微粉的θ到α相轉換與燒結”,國立成功大學資源工程研究所,碩士論文,中華民國87年8月。
20.溫惠玲,“由Boehmite製得之氧化鋁粉末的θ→α-Al2O3相轉換”,國立成功大學資源工程研究所,博士論文,中華民國89年1月。
21.Yen, F. S., H. L. Wen, and Y. T. Hsu, “Crystallite Size Growth and the Derived Dilatometric Effect during θ- to α-phase Transformation of Nano-sized Alumina Powders,” J. Cryst Growth, 233 761-773 (2001).
22.Yen, F. S., J. L. Chang, and P. C. Yu, “Relationships between DTA and DIL Characteristics of Nano-sized Alumina Powders during θ- to α-phase Transformation,” J. Cryst Growth, (2002 accepted).
23.Putnis, A., Introduction to Mineral Sciences, Cambridge University Press, 1992.
24.Putnis, A. and J. D. C. McConnell, Principles of Mineral Behaviour, Elsevier, New York, 1980.
25.Bamford, C. H. and C. F. H. Tipper, Reactions in the Solid State, Comprehensive Chemical Kinetics, Vol.22, Else. Sci. Pub. Co., New York, 1980.
26.Malow, T. R. and C. C. Koch, “Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition,” Acta mater, 45 [5] 2177-2186 (1997).
27.Shek, C. H., J. K. L. Lai and G. M. Lin, “Grain Growth in Nanocrystalline SnO2 Prepared by Sol-Gel Route,” NanoStruct. Mat., 11 [7] 887-893 (1999).
28.Ozawa, T., “Kinetic Analysis of Derivative Curves in Thermal Analysis,” J. Thermal Anal., 2 [3] 301-324 (1970).
29.Steiner, C. J. P., D. P. H. Hasselman, and R. M. Spriggs, “Kinetics of the Gamma-to-Alpha Alumina Phase Transformation,” J. Am. Ceram. Soc., 54 [8] 412-413 (1971).
30.Kao, H. C. and W. C. Wei, “Kinetics and Microstructural Evolution of Heterogeneous Transformation of θ-Alumina to α-Alumina,” J. Am. Ceram. Soc., 83 [2] 362-368 (2000).
31.Nordahl, C. S. and G. L. Messing, “Thermal Analysis of Phase Transformation Kinetics inα- Al2O3 Seeded Boehmite andγ-Al2O3,” Thermochimica Acta, 318 187-199 (1998).
32.Nishio, T. and Y. Fujiki, “Phase Transformation Kinetics of Precursor Gel to α-Alumina,” J. Mater. Sci., 29 3408-3414 (1994).
33.Bagwell, R. B. and G. L. Messing, “Effect of Seeding and Water Vapor on the Nucleation and Growth of α- Al2O3 from γ-Al2O3,” J. Am. Ceram. Soc., 82 [4] 825-832 (1999).
34.Wilson, S. J. and J. D. C. Mc Connell, “A Kinetic Study of the Systemγ-AlOOH/Al2O3,” J. Solid State Chemistry, 34 315-322 (1980).
35.Shelleman, R. A., G. L. Messing, and M. Kumagai, “Alpha Alumina Transformation in Seeded Boehmite Gels,” J. Non-Cryst. Solids, 82 277-285 (1986).
36.Clark, P. W. and J. White, “Some Aspects of Sintering,” Trans. Brit. Ceram. Soc., 49 305-333 (1950).
37.Ozawa, M. and M. Kimura, “Effect of Cerium Addition on the Thermal Sablity of Gamma Alumina Support,” J. Mater. Sci. Lett., 9 291-293 (1990).
38.Urretavizcaya, G. and J. M. Porto Lopez, “Thermal Transformation of Sol-Gel Alumina intoα-phase. Effect of α- Al2O3 Seeding,” Mater. Res. Bull., 27 [4] 375-385 (1992).
39.Kato, E., K. Daimon, and M. Nanbu, “Decomposition of Two Aluminum Sulfates and Characterization of the Resultant Aluminas,” J. Am. Ceram. Soc., 64 [8] 436-445 (1981).
40.Kissinger, H. E., “Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis,” J. Res. Nat. Bur. Stds., 57 [4] 217-221 (1956).
41.Borchardt, H. J. and F. Daniels, “The Application of Differential Thermal Analysis to the Study of Reaction Kinetics,” J. Am. Chem. Soc., 79 [1] 41-46 (1957).
42.Freeman, E. S. and B. Carroll, “The Application of Thermoanalytical Techniques to Reaction Kinetics. The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate,” J. Phys. Chem., 62 [4] 394-397 (1958).
43.Coats, A. W. and H. P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature (London), 201 [1] 68-69 (1964).
44.Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London, 1978.
45.Mutsuddy, B. C. and R. G. Ford, Ceramic Injection Molding, Materials Technology Series, 1sted, Chapman and Hall, New York, 1995.
46.劉惠宏,“θ-Al2O3晶徑對θ至α-Al2O3相轉換過程的熱行為影響觀察”,國立成功大學資源工程研究所,碩士論文,中華民國87年9月。
47.Niesz, D. E. and R. B. Bnnett, “Structure and Properties of Agglomerates,” 61-73, in Ceramic Processing before Firing, Edited by G. Y. Onoda. Jr. and L. L. Hench, Wiley, New York, 1978.
48.Lange, F. F., “Sinterability of Agglomerated Powders,” J. Am. Chem. Soc., 67 [2] 83-89 (1984).
49.Li, J. G. and X. Sun, “Synthesis and Sintering Behavior of a Nanocrystalline α-Alumina Powder,” Acta Mater., 48 3103-3112 (2000).
50.許宇嬋,“微粒θ-與α-Al2O3混合粉末的熱反應”,國立成功大學資源工程研究所,碩士論文,中華民國90年7月。
51.Yen, F. S., M. Y. Wang and J. L. Chang, “Temperature Reduction of θ- to α-Phase Transformation induced by High-Pressure Pretreatment of Nano-sized Alumina Powders Derived from Boehmite,” J. Cryst Growth, 236 197-209 (2002).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔