跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宏奕
研究生(外文):Hung-I Lin
論文名稱:破裂岩體隧道開挖對滲透係數之影響-以雪山隧道為例
論文名稱(外文):The Disturbance of Hydraulic Conductivity Caused by Excavating in Fractured Rock - A Case Study in Xue-Shan Tunnel
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:88
中文關鍵詞:破裂岩體雪山隧道隧道滲流
外文關鍵詞:Ground seepageXue-Shan tunnelUDECFractured rock mass
相關次數:
  • 被引用被引用:5
  • 點閱點閱:500
  • 評分評分:
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:3
摘要
本研究主要以有效孔隙模式估計破裂岩體於應力作用下滲透係數改變量。模式中利用UDEC程式估計破裂面於正應力作用下內寬閉合量,建立破裂岩體中應力與有效孔隙之關係,以破裂岩體有效孔隙推求滲透係數,建立力學行為與滲透係數之模型。考慮有效孔隙為應力、破裂面內寬、破裂面間距與RMR值之函數,並以雪山隧道作為研究案例。
利用本文建立模式執行敏感性分析結果指出:破裂面位態將影響岩體滲透係數異向性,其影響滲透係數改變量分布之最大因素。破裂面初始內寬則影響閉合量甚鉅,為影響滲透係數改變量大小最大因素。破裂面間距將影響應力分布,間距越大影響範圍越大。隧道大小也將影響分析結果,隧道半徑越大,開挖造成之滲透係數影響越大,距離越遠。應用於雪山隧道案例結果:距地表較深,隧道深度為330公尺之隧道周圍滲透係數增加1%~4%,影響範圍約為三倍隧道半徑,而距地表較淺,深度為185公尺之隧道周圍滲透係數增加5%~17%,影響範圍約為五倍隧道半徑,兩者皆受到應力與地質構造之影響。
Abstract
A proposed model was established to predict the disturbance of hydraulic conductivity caused by excavating in fractured rock. The UDEC computer program was relied to calculate the closure of aperture when stresses change in order to build the model that linking with stress and effective porosity and combine the relations among effective porosity and hydraulic conductivity to forecast magnitude and range of hydraulic conductivity in disturbance zone. Then the proposed model was applied to Xue-Shan tunnel to estimate the change of hydraulic conductivity after excavating.
Results of sensitive analysis show that the effects of the fracture orientation distribution and the initial aperture of fractures on the magnitude of changed hydraulic conductivity around the tunnel are the most significant factors. Besides, the spacing of fractures and the diameter of tunnel also affect the elements of disturbance zone around the tunnel. In the case of Xue-Shan tunnel, the changes of hydraulic conductivity of tunnel in the depth of 330 m is about 1%~4% and the range of disturbance zone is about three times of tunnel diameter. By the way, the changes in the depth of 185 m is about 5%~17% and the range of disturbance zone is about i five times of tunnel diameter.
目錄

中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 XI
第一章 緒論 1
1.1 研究動機 1
1.2 前人研究 3
1.2.1破裂岩體力學行為與水流偶合問題之研究 3
1.2.2 隧道開挖引致應力與透水係數變化 4
1.3 研究目的與流程 6
第二章 分析模式之建立 8
2.1 破裂岩體透水係數張量之當量化 8
2.2 破裂岩體透水性分析 9
2.3 破裂岩體之有效孔隙比 13
2.4 變形性分析 15
2.5 UDEC程式介紹 20
2.5.1 UDEC程式簡介 20
2.5.2 UDEC程式發展沿革 21
2.5.3 UDEC程式基本理論 22
2.5.4 節理面材料組成模式 28
2.6 破裂面內寬改變量之估計 30
第三章 模式敏感性分析 33
3.1 敏感性分析模式建立 33
3.2岩體及破裂面參數敏感性分析 35
3.2.1 破裂面位態-破裂岩體滲透係數改變量 35
3.2.2 破裂面間距-破裂岩體滲透係數改變量 42
3.2.3 破裂面內寬-破裂岩體滲透係數改變量 47
3.2.4 破裂岩體隧道半徑-破裂岩體滲透係數改變量49
第四章 應用模式於雪山隧道滲透係數變化量之估 52
4.1雪山隧道簡介 52
4.2 研究區地質概述 55
4.2.1雪山隧道地質背景 55
4.2.2 沿線地質簡介 56
4.3案例概述 58
4.3.1 分析模式參數選取 60
4.4 案例分析 69
4.4.1 破裂面正應力-正向閉合量雙曲線之擬 69
4.4.2 隧道開挖引致之應力改變量估計 71
4.4.3 岩體滲透係數改變量之估計 76
第五章 結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 84
1.Barton, N., Bandis, S., and Bakhtar, K., “Strength, Deformation and Conductivity Coupling of Rock Joints,“ International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 22, No. 3, pp.121-140(1985).
2.Bandis, S. C., Lumsden, A. C. and Barton N. R., “Fundamentals of Rock Joint Deformation,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.20, No.6, pp.249-268 (1983).
3.Charlez, P. A., Rock Mechanics:Theoretical Fundamentals, (1991).
4.Farmer, I. W., Engineering Behavior of Rocks, Chapman & Hall, London(1985).
5.Goodman, R. E., Methods of Geological Engineering in Discontinuous Rock, West, St. Paul, MN.
6.Heckman, R. A., Towse, D.F. Isherwood, D. et al., “High Level Waste Repository Site Suitability Study, “ Status Report, NUREG/CR-0578.
7.Hoek, E. and Brown, E. T., Underground Excavations in Rocks, Institution of Mining and Metallurgy, London(1980).
8.Hurr, R. T. and Richard, D.B., “Engineering Geologic, Geophysical, Hydrologic and Rock-Mechanics Investigations of The Straight Greek Tunnel Site and Pilot Bore,” Colorado: Hydrologic Investigations. U.S. Geol. Survey Prof. Paper 815, pp.78-92(1974).
9.Itasca consulting group, Inc. “Universal Distinct Element Code:User Manual”(1992).
10.Jaeger, J. C. and Cook, N. G. W., Fundamental of Rock Mechanics, Chapman & Hall, Landon(1979).
11.Jakubick, A. T. and Franz, T., “Vacuum Testing of The Permeability of The Excavation Damaged Zone, “Rock Mechanics and Rock Engineering, Vol. 26, No. 2, pp.165-182 (1993).
12.Jing, L., Ma, Y. and Fang, Z., “Modeling of Fluid Flow and Solid Deformation for Fractured Rocks with Discontinuous Deformation Analysis (DDA) Method,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp.343-355 (2001).
13.Kobayashi, A., Fujita, T. and Chijimatsu, M., “Continuous Approach for Coupled Mechanical And Hydraulic Behavior of A Fractured Rock Mass During Hypothetical Shaft Sinking at Sellafield, UK,” International Journal of Rock Mechanics and Mining Sciences, Vol.38, No. 1, pp45-57 (2001).
14.Lee, C.H., Deng, B.W., and Chang, J.L., “A Continuum Approach for Estimating Permeability in Naturally Fractured Rocks ,” Engineering Geology, Vol.39, pp.71-85(1995).
15.Lin, B. S., Lee, C.H. and Hwang, H.H., “Analysis of Mass Transport Through Fractured Networks using Percolation Theory Approach,” Journal of The Chinese Institute of Environment Engineers, Vol. 7, No. 1, pp. 1-11. (1997).
16Liu, J. Elsworth, D. and Brady, B.H. “Linking Stresses-dependent Effective Porosity And Hydraulic Conductivity Fields to RMR.” International Journal of Rock Mechanics and Mining Sciences, Vol. 36,pp.581-596(1998).
17.Long, J.C.S., Remer, C.R., and Witherspoon, P.A., “The Relationship of the Degree of Interconnection to Permeability of Fracture Networks ,” Water Resource Research, Vol.90(B4), pp.3087-3098(1985).
18.Mohammad, N., Reddish, D. J. and Stace, L. R., “The Relation Between in-situ And Laboratory Rock Properties Used inNumerical Modeling,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.34, No.2, pp.289-297 (1997).
19.Montazer, P. Chitombo, G., King, R. and Ubber, W., ”Spatial Distribution of Permeability Around CSM.ONWI Room, Edgar Mine, Idaho Spring, Colorado. “Proc. 23rd Symp. On Rock Mechanics, University of California, Berkeley, pp.47-56(1982).
20.Nguyen, T. S., Borgesson, L., Chijimatsu, M., Rutqvist, J., Fujita, T., Hernelind, J., Kobayashi, A., Ohnishi, Y., Tanaka, M. and Jing L., “Hydro-mechanical Response of A Fractured Granitic Rock Mass to Excavation of A Test Pit-The Kamaishi Mine Experiment in Japan,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp.79-94 (2001).
21.Priest, S. D., Discontinuity Analysis for Rock Engineering, Chapman & Hall, London SE1 8HN, (1993).
22.Raaen, A. M., Skomedal, E., Kjorholt, H., Markestad P. and Okland, D., “Stress Determination from Hydraulic Fracturing Tests: The System Stiffness approach,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 1, pp.529-541(2001).
23.Rouleau, A., and Gale, J.E., “Stochastic Discrete Fracture Simulation of Groudwater Flow into an Underground Excavation in Granite,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.24, No.2, pp.99-112 (1987).
24.Schwartz, F. W., and Smith, L., “A continuum Approach for Modeling Mass Transport in Fractured Media ,” Water Resource. Research, Vol.19, No.4, pp.959-969(1988).
25.Shen, B., and Barton, N., “The Disturbed Zone Around Tunnels in Jointed Rock Masses,“ International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.1, pp.117-125(1997).
26.Snow, D.T., “The Frequency and Apertures of Fractures in Rock ,“International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.7, pp.23-40(1970).
27.Tannant, D.D., Kaiser, P.K., and Chan, D.H., “Effect of Tunnel Excavation on Transmissivity Distributions and Flow in a Fracture Zone,” Geotechnique, Vol.30, pp.155-169(1993).
28.Wei, Z. Q., Egger, P. and Descoeudres, F., “Permeability Predictions for Jointed Rocked Masses,” International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts, Vol. 32, No. 3, pp. 251-261, (1995).
29.Zhang, L. and Franklin, J. A., “Prediction of Water Flow into Rock Tunnels: An Analytical Solution Assuming An Hydraulic Conductivity Gradient, “International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 30, No. 1, pp. 37-46, (1993).
30.古元豐、李宏徹,「北宜高坪林隧道導坑里程39K+079 TBM停機處理之判釋」,1996岩盤工程研討會論文集,第221-230頁 (1996)。
31.交通部台灣區國道新建工程局,「北宜高速公路施工階段雪山隧道湧水問題評估調查服務工作第一年度成果報告」,中興工程顧問股份有限公司(1998)。
32.交通部台灣區國道新建工程局,「國道南港宜蘭快速公路工程路線評選階段雪山隧道段地質調查工作期末報告」,財團法人中興顧問工程社(1990)。
33.李振誥、李宏徹、黃崇琅、林碧山,「岩體隧道滲流量之預測:以坪林隧道為例」,中國土木水利工程學刊,第十卷,第四期,第 595-604頁(1998)。
34.李振誥、陳昭旭,「隧道工程地下水探查技術與應用」,隧道工程地質探查技術研討會論文集,臺北,第 99-126頁 (2000) 。
35.林碧山,「破裂岩體地下水滲流與溶質傳輸」,博士論文,國立成功大學資源工程學系,臺南(2000)。
36.洪浩原,「破裂岩體隧道滲流之研究」,碩士論文,成功大學資源工程研究所,台南(1999)。
37.陳明君,「頭城地區四稜砂岩水文地質及隧道湧水之研究」,碩士論文,國立台灣大學地質所,台北(1997)。
38.陳榮華,「破裂安山岩體放射性核種傳輸之研究」,博士論文,國立成功大學資源工程學系,臺南(2001)。
39.鄺寶山、王文禮,「FLAC程式於隧道工程之實例分析」,地工技術雜誌,第41期,第50-61頁(1993)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top