(3.231.29.122) 您好!臺灣時間:2021/02/25 21:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘秋金
研究生(外文):Chiu-Chin Pan
論文名稱:以陽離子型界面活性劑合成有機黏土吸附有機化合物之研究
論文名稱(外文):Sorption of organic compounds to organoclays intercalated with cationic surfactants
指導教授:申永輝申永輝引用關係
指導教授(外文):Yun-Hwei Shen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:104
中文關鍵詞:蒙特石有機黏土陽離子型界面活性劑有機化合物吸附作用分配作用
外文關鍵詞:Organic compoundOrganoclayPartitionAdsorptionCationic surfactantMomtmorillonite
相關次數:
  • 被引用被引用:11
  • 點閱點閱:414
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:129
  • 收藏至我的研究室書目清單書目收藏:0
蒙特石屬於2:1型膨脹性黏土礦物,於水中時會因具特殊層狀矽酸鹽構造剝離(delaminate)而有相當大之比表面積,約700至800m2/g[48]。水溶液中蒙特石表面的極性強,易與極性水分子作用形成水合層(hydration layer),而弱極性有機化合物則無法有效的與水分子競爭蒙特石的吸附表面,故天然蒙特石雖然具高比表面積,但對水中有機化合物並非一良好的吸附劑。
本研究以TMA、BTMA、TEA、BTEA、DPC和HDTMA等六種含不同碳鏈構造的陽離子界面活性劑合成有機黏土,探討其土樣構造及物化性質。並進行吸附實驗瞭解各有機黏土及活性碳對Benzene、Phenol、1-Naphthol和Perchloroethylene吸附機制特性,以評估有機黏土替代活性碳進行對有機化合物吸附的可行性。
實驗結果顯示陽離子界劑合成之有機黏土層間d(001)距離皆增加;長鏈陽離子界劑合成之有機黏土,其有機質構造性質膨鬆,在熱性質分析時呈現較低溫度之放熱峰;短鏈陽離子界劑合成之有機黏土,其有機質構造性質較具剛性,在熱性質分析時呈現較高溫度之放熱峰。蒙特石對陽離子界劑之親和力及飽和吸附量隨著活性劑之鏈長的增加而增加。以不同碳鏈構造陽離子界劑合成之有機黏土對有機化合物的吸附現象,顯示一般以短碳鏈陽離子界劑所合成的有機黏土是以表面吸附作用為吸附機制,而以長碳鏈構造陽離子界劑所合成的有機黏土是以分配作用為吸附機制。
以BTMA和BTEA陽離子界劑所合成之有機黏土由於陽離子界劑分子構造的疏水端具苯環的p鍵作用,對Benzene和Phenol具較高吸附量,而TMA陽離子界劑所合成之有機黏土對Benzene吸附容量最高。以BTMA陽離子界劑合成有機黏土對Benzene和Phenol為吸附作用機制,並具有類似活性碳構造之競爭吸附現象。以HDTMA陽離子界劑合成有機黏土對Benzene和Phenol的吸附為具有類似土壤有機質之分配作用機制,無競爭吸附現象。具芳香環碳之有機化合物在有機黏土上之吸附量與其水溶解度成反比關係,有機化合物的水溶解度大小為1-Naphthol<Benzene<Phenol,而有機黏土對有機化合物的吸附量大致依次為1-Naphthol>Benzene>Phenol,顯示疏水作用為有機黏土吸附有機化合物之主要作用,此與活性碳為相同吸附機制。
A montmorillonitic clay with layer structure and expansion properties belongs to 2:1 type silica layer clay mineral. The layer structure of the clay facilitates expansion and causing delaminating to create very large surface area (about 700 to 800m2/g) after wetting. The surface of montmorillonite is strongly hydrated in the presence of water, resulting in a hydrophilic environment at the clay surface. Consequently, natural montmorillonite is an ineffective sorbent for nonionic organic compounds (NOC) in water although it has a high surface area.
This work studies the adsorption of Benzene, Phenol, 1-Naphthol and Perchloroethylene by montmorillonite intercalated with TMA, BTMA, TEA, BTEA, DPC and HDTMA ion to elucidate how the structure of exchanged organic cations affect the mechanistic function of the modified clay. In addition, the physical and chemical properties of the organoclays were identified by SEM, X-ray diffraction and DTA analysis respecting. It is expected that results of this work will help the understanding of the adsorption mechanisms of organic compounds on organoclays and active carbon.
Experimental results indicate that the d-spaces of the organoclays exchanged with cationic surfactants were all increased. The organoclays intercalated with long chain cationic surfactants tend to have loosely aggregate surfactants between larger spaces and this organic matter structure reveals higher exothermic peaks. The organoclays intercalated with short chain cationic surfactants demonstrate more tightly aggregations of surfactants in interlamellar space of montmorillonite and form a relative by rigid carbon structures that reveal lower exothermic peaks.
The saturation amounts of adsorption and affinity of cationic surfactants on montmorillonite increase as the length of carbon chain of cationic surfactant increase. The adsorption phenomenon of organic compounds by organoclays exchanged with various cationic surfactants confirms that the small organic cations create a relatively rigid, nonpolar surface amenable to nonionic solute uptake by adsorption whereas the larger organic cations create an organic partition medium.
The uptakes of Benzene and Phenol on BTMA- and BTEA-organoclays are lager whereas the uptake of Benzene on TMA-organoclay is the largest probably due to the hydrophobic structures and p-bond interaction. The uptakes of Benzene and Phenol on BTMA-organoclay by adsorption mechanism demonstrate a competed adsorption phenomenon similar to that of active carbon. The uptakes of Benzene and Phenol by HDTMA-organoclay through partition mechanism demonstrate a noncompeted adsorption behavior similar to that of the organic matter in soil. The trend of organic compounds uptakes and water solubility of organic compounds are opposite. The order of the solubility is: 1-Naphthol<Benzene<Phenol, whereas, the order of organic compounds uptake by organoclays is: 1-Naphthol>Benzene>Phenol. This result indicates that the sorption of organic compounds to organoclays is driven mainly by hydrophobic effect.
目 錄
摘 要 I
Abstract III
誌 謝 V
表 目 錄 VIII
圖 目 錄 IX
第1章 緒 論 1
1-1 研究背景 1
1-2 研究目的 3
第2章 理論背景 4
2-1 黏土礦物的基本構造 4
2-1-1 膨潤石族的構造與性質 8
2-1-2 有機黏土的構造與性質 11
2-2 界面活性劑 13
2-2-1 界面活性劑之分類 13
2-2-2 界面活性劑微胞 16
2-3 界面活性劑在固液界面之吸附 20
2-4 土壤對有機化合物之吸附 23
2-4-1 表面吸附作用 23
2-4-2 分配作用 27
2-4-3 等溫吸附線 29
2-5 陽離子交換 31
第3章 實驗方法與步驟 33
3-1 實驗流程 33
3-2 實驗設備 33
3-3 實驗材料 35
3-4 實驗步驟 40
3-4-1 黏土對界面活性劑吸附平衡實驗 40
3-4-2 有機黏土的性質測定 41
3-4-3 有機黏土及活性碳對有機化合物的吸附平衡實驗 42
3-4-4 有機黏土及活性碳對兩種有機化合物的競爭吸附實驗 44
3-4-5 分析方法檢量線的製備 45
第4章 結果與討論 48
4-1 有機黏土特性分析 48
4-1-1 電子顯微鏡分析 48
4-1-2 X光繞射分析 53
4-1-3 熱性質分析 56
4-2 蒙特石對陽離子型界面活性劑吸附實驗 65
4-3 合成有機黏土及活性碳對有機化合物吸附之比較 70
4-3-1 有機黏土對有機化合物之吸附 70
4-3-2 活性碳對有機化合物之吸附 80
4-3-3 有機黏土及活性碳對有機化合物之競爭吸附 82
第5章 結論 87
參考文獻 89
附錄A 吸附實驗流程圖 95
附錄B 等溫吸附曲線數據 99

表 目 錄
表2-1 層狀矽酸鹽分類 7
表2-2 膨潤石族礦物分類 10
表2-3 常見膨潤石化學結構式 10
表2-4 物理及化學吸附相對特性 24
表3-1 粒狀活性碳之物理性質 37
表3-2 各種陽離子界面活性劑之物理性質 38
表3-3 各種有機化合物之物理性質 39
表3-4 高效液相層析儀操作條件 43
表4-1 A蒙特石及各有機黏土層間距離 55
表4-2 有機黏土之放熱峰溫度 61
表4-3 A蒙特石及各有機黏土之熱失重百分比 64
表4-4 B蒙特石及各有機黏土之熱失重百分比 64
表4-5 蒙特石對陽離子界面活性劑的平衡吸附量 69

圖 目 錄
圖2-1 層狀矽酸鹽礦物中矽氧四面體和鋁鎂八面體及其所組成之單層構造示意圖 6
圖2-2 膨潤石之構造 8
圖2-3 有機黏土層間不同有機質構造示意圖 12
圖2-4 界面活性劑的分類示意圖 14
圖2-5 界面活性劑在液相及固相形成微胞之型態 17
圖2-6 界面活性劑水溶液濃度所致物理化學性質的變化 18
圖2-7 離子交換作用 22
圖2-8 靜電引力作用 22
圖2-9 疏水鍵結作用 22
圖2-10 等溫吸附線的四種型態 29
圖2-11 高嶺石顆粒大小與陽離子交換容量之關係 32
圖3-1 研究流程圖 34
圖3-2 高效液相層析儀之偵測流程(a)及平面圖(b) 46
圖3-3 各有機化合物檢量線 47
圖4-1 合成前黏土SEM圖 49
圖4-2 A蒙特石以各種陽離子界面活性劑合成有機黏土SEM圖 50
圖4-3 B蒙特石以各種陽離子界面活性劑合成有機黏土SEM圖 51
圖4-4 黏土礦物元素成份定性分析圖 52
圖4-5 黏土礦物之X光繞射圖 53
圖4-6 A蒙特石及各有機黏土層間距離變化圖 55
圖4-7 黏土礦物之熱差及熱重分析曲線 57
圖4-8 A蒙特石及各有機黏土之熱差曲線 60
圖4-9 B蒙特石及各有機黏土之熱差曲線 60
圖4-10 A蒙特石及各有機黏土之熱重曲線 63
圖4-11 B蒙特石及各有機黏土之熱重曲線 63
圖4-12 蒙特石對HDTMA之吸附動力實驗結果 65
圖4-13 A蒙特石對陽離子界面活性劑吸附平衡等溫吸附線 68
圖4-14 B蒙特石對陽離子界面活性劑吸附平衡等溫吸附線 68
圖4-15 各界面活性劑合成有機黏土對Benzene的等溫吸附線 76
圖4-16 各界面活性劑合成有機黏土對Phenol的等溫吸附線 76
圖4-17 各界面活性劑合成有機黏土對1-Naphthol的等溫吸附線 77
圖4-18 各界面活性劑合成有機黏土對PCE的等溫吸附線 77
圖4-19 有機黏土對各有機化合物吸附等溫線 79
圖4-20 活性碳對有機化合物等溫吸附線 81
圖4-21 活性碳對有機化合物競爭吸附等溫線 84
圖4-22 BTMA有機黏土對有機化合物競爭吸附等溫線 85
圖4-23 HDTMA有機黏土對有機化合物競爭吸附等溫線 86
1.王明光,環境土壤化學,五南圖書出版有限公司,2000。
2.Boyd, S. A., J. F. Lee and M. M. Mortland, ²Attenuating Organic Contaminant Mobility by Soil Modification², Nature, Vol.333, No.26, pp.345-347, 1988.
3.Jaynes, W. F. and G. F. Vanve, ²BTEX Sorption by Organo-clay: Cosorption Enchantment and Equivalence of Interlayer Complexes², Soil. Sci. Am. J., Vol.60, pp. 1742-1749, 1996.
4.Smith, J. A., P. R. Jaffe and C. T. Chiou, ²Effect of Ten Quaternary Ammonium Actions on Tetrachloromethane Sorption to Clay from Water², Environ. Sci. Technol., Vol.24, No.8, pp.1167-1172, 1990.
5.Lee, J. F., M. M. Mortland and C. T. Chiou, ²Adsorption of Benzene, Toluene, and Xylene by Two Tetramethylammonium-Smectites Having Different Charge Densities², Clays and Clay Minerals, Vol.38, No.2, pp.113-120, 1990
6.Summers, R. S. and P.V. Roberts, ²Activated Carbon Adsorption of Humic Substances II. Size Exclusion and Electrostatic Interactions.² J. Clloid Interface Sci, 122(2), pp: 382-397,1988.
7.Karafil, T. and A. Kilduff, ²Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants², Environ. Sci. Technol, 33(18), pp: 3217-3224,1999.
8.洪崑煌,環境化學,國立編譯館,台北市,1996。
9.陳培源,²X射線繞射實驗與黏土礦物之研究²,科學發展月刊,第2卷,第6期,pp.836-841,2000。
10.Klein, G. and C. S. Tr. Hurlbut, Manual of Mineralogy, 21th ed, John Wiley&Sons, 1993.
11.郭魁士,土壤學,中國出版社,台北縣,1985。
12.張仲民,普通土壤學,國立編譯館,台北市,1988。
13.劉慧玲,²台東彰原黏土資源之有機黏土備製研究²,國立成功大學資源工程系碩士論文,2001。
14.張郇生,²麥飯石探微-兼論膨潤石外型、特徵、及用途²,地質,第19卷,第一期,pp.68-88,1999。
15.任磊夫,黏土礦物與黏土岩,地質出版社,1992。
16.黃怡禎,礦物學,地球科學文教基金會,2000。
17.曾秀琼,²無機-有機膨潤土對活性艷紅染料廢水的處理²,環境科學與技術,第6期,pp.30-32,2000。
18.Lee, J. F., M. M. Mortland and S. A. Boyd, ²Shape-Selective Adsorption of Aromatic Molecules from Water by Tetramethylammonium-smectite², J. Chem. Soc., Faraday Trans. l., 85(9), 2953-2962, 1989.
19.王詠雲,²界面活性劑原理²,化工技術,第2卷,第一期,第15-17頁,1978。
20.王鳳英,²界面活性劑的化學構造與其物理性質之關係²,界面科學,第八卷,第四期,第17-25頁,1985。
21.趙承琛,界面科學基礎,復文書局,1996。
22.歐靜枝,乳化溶化技術實務,復漢出版社,1990。
23.Edwards, D. A., Z. Liu and R. G. Luthy, ²Surfactant Solubilization of Organic Compounts in Soil/Aqueous Systems², Journal of Environmental Engineering, Vol.120, pp.23-41, 1994.
24.Oma, K. H., D. J. Wilson and R. D. Mutch, ²Surfactant Flushing/Washing:Economics of an Innovative Remedial Process Including Recovery and Recycle², Hazmat Central Conference Proceedings, pp. B4-48-B4-61, 1991.
25.Pennell, K. D., L. M. Abriola and W. J. Weber, ²Surfactant-Enhanced Solubilization of Residual Dodecane in Soil Columns. 1.Experimental Investigation², Environ. Sci. Technol., Vol.27, No.12, pp.2332-2340, 1993.
26.趙承琛,界面活性劑化學,復文書局,1984。
27.鄭雙福,申永輝,²以界面活性劑溶液淋洗受油污染場址現地復育技術開發(I)²,行政院國家科學委員會專題研究計劃成果報告,1996。
28.賴耿陽,界面活性劑應用實務,復漢出版社,1994。
29.Shiau, B.J., D.A. Sabatini and J.H. Harwell, ²Solubilization and Microemulsification of Chlorinated Solvents Using Direct Food Additive (Edible) Surfactants², Ground Water, Vol.32, No.4, pp.561-569, 1994.
30.Nevskaia, D.M., A.G. Ruiz, and J.D. Gonzalez, ²Adsorption of Polyoxyethylenic Surfactants on Quartz, Kaolin, and Dolomite: A Correlation between Surfactant Structure and Soil Surface Nature², Colloid and Interface Sci., Vol.181, pp.571-580, 1996.
31.Harwell, J. H., ²Factors Affecting Surfactant Performance in Groundwater Remediation Applications², Amewican Chemical Society Symposium Series 491., pp.124-132, 1992.
32.Rosen, M. J., Surfactants and Interfacial Phenomena, Second Edition, Wiley-Interscience., pp.1-169, 1989.
33.Somasundaran, P., E. D. Snell and Q. Xu, ²Adsorption Behavior of Alkylarylethoxylated Alcohols on silica², J. Colloid & Interface Sci., Vol.144, No.1, pp. 165-173, 1991.
34.Kuhnt, G., ²Behavior and Fate of Surfactants in Soil², Environ. Toxic and Chem., Vol.12, pp. 1813-1820, 1993.
35.Boyd, S. A., M. M. Mortland and C.T. Chiou, ²Sorption Characteristics of Organic Compounds on Hexadecyltrimethylammonium-Smectite², Soil. Sci. Soc., Am. J, Vol.52, pp.652-657, 1988.
36.Gu, T., B.Y. Zhu. and H. Rupprecht, ²Surfactant Adsorption and Surface Micellization², Progress in Colloid &Polymer Science, Vol.88, pp.74-85, 1992.
37.Xu, S., and S. T. Boyd, ²Cationic Surfactant Sorption to a Vermiculitic Subsoil via Hydrophobic Bonding², Environ. Sci. Technol., Vol.29, No.2, pp.312-320, 1995.
38.申永輝、陳得三,²界面活性劑在高嶺土膠體表面之吸附及對膠體穩定性之影響²,界面科學會誌,第十八卷,第一期,第13~18頁,1995。
39.Weber, J. W., ²Adsorption in Physico-chemical Process-for Water Quality Control², John Wiley, New York, 1972.
40.Chiou, C. T., L. J. Peter and V. H. Freed, ²A Physical Concept of Soil-water Equilibria For Nonionic Organic Compounds², Science, Vol.206, pp.831-832, 1979.
41.林健榮,²燃煤飛灰去除水中污染物行為之研究²,國立成功大學環境工程學系博士論文,2001。
42.閻誠麟,²不同類型界面活性劑對黏土礦物吸附非離子有機污染物之影響²,國立中央大學環境工程系碩士論文,1997。
43.張清裕,²有機滲液對黏土及改良黏土之滲透性及有機污染物阻滯能力之影響²,國立中央大學環境工程系碩士論文,1995。
44.Lambert, S. M., ²A Useful Index of Soil Sorption Equalibria², Agriculture and Food Chemistry, Vol.16, pp.340-343, 1968.
45.Giles, C.H., T.H. Macewan, S.N. Nakhwa and D. Simth, ²Studies in Adsorption. Part ⅩⅠ. A System of Classification of Adsorption Isotherms and Its Ues in Diagnosis of Adsorption Mechanisms and in Measurement of Specific Surface Areas of Solids², J. Chem. Soc., pp: 3973-3993, 1960.
46.Velde, B., Introduction to Clay Minerals, published by Chapman&Hall, London, 1992.
47.http://www.niea.gov.tw/niea/SOIL/S20160T.htm,土壤中陽離子交換容量─醋酸銨法。
48.王明光,土壤環境礦物學,藝軒圖書出版有限公司,2000。
49.Gauthier, T. D., S. W. Rudolf and C. L. Grant, ²Effects of Structural and Compositional Variations of Dissolved Humic Materials on Pyrene Koc Values.², Environ. Sci. Technol., 21(3), pp.243-248, 1987.
50.Uhle, M. E., Y. Chin, G. R. Aiken and D.M. Micknight, ²Binding of Polychlorinated Biphenyls to Aquatic Humic Substances: The Role of Substrate and Sorbate Properties on Partitioning², Environ. Sci. Technol., 33(16), pp.2715-2718, 1999.
51.周佳慧,²活性碳孔洞結構對不同氣體有機物吸附之影響²,國立成功大學化學工程系碩士論文,2001。
52.Weber, Jr. W. J., W. Huang and E. J. LeBoeuf, ²Geosorbent Organic Matter and Its Relationship to the Binding and Sequestration of Organic Contaminants², Colloids and Surfaces, Vol.151, pp167-179, 1999.
53.Lambert, S. M., ²Functional Relationship between Sorption in Soil and Chemical Structure², J. Agric., Food Chem., Vol.15, pp: 572-576, 1967.
54.Doug, R.G. and W.L. Leonard, ²Influence of the Nature of Soil Organic of Toluene and Trichloroethlene², Environ. Sci. Technol., Vol.20, N.12, pp: 1263-1269, 1986.
55.金相燦,環境毒性有機污染物污染化學,淑馨出版社,1998。
56.Grim, R.E., Clay Mineralogy, McGraw-Hill, New York, 1968.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔