(3.232.129.123) 您好!臺灣時間:2021/03/04 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏雅侖
研究生(外文):Ya-Lun Yen
論文名稱:錳鋅鐵氧化物磁性流體之製備及分散研究
論文名稱(外文):Preparation and Dispersion Studiesm on the Mn/Zn Ferrite basede Magnetic Fluid
指導教授:雷大同
指導教授(外文):Dah-Tong Ray
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:91
中文關鍵詞:Mn/Zn鐵氧化物化學共沉法表面活性劑磁性流體
外文關鍵詞:surfactantco-precipitation methodMn/Zn ferritemagnetic fluid
相關次數:
  • 被引用被引用:34
  • 點閱點閱:721
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:152
  • 收藏至我的研究室書目清單書目收藏:0
  磁性流體 (Magnetic Fluid) 是將奈米級粒徑的磁性顆粒 (Nano-magnetic Particles) 經表面活性劑處理後,安定分散於水或有機溶媒中,而製備之懸浮液,其磁性顆粒不因磁場或重力場之作用,產生凝聚而與液體分離。將磁性流體置於磁場中,由於磁場之作用,懸浮液中之磁性顆粒即往強磁場方向移動,同時亦帶動溶媒分子一起移動,其行為與鐵、鎳等固態強磁性物體相同,為液態之強磁性物體,因此磁性流體是兼具磁性與流體之性質。
  磁性流體是1960年代中,美國航空太空總署 (NASA) 科學家Papell發明,Papell將磁鐵礦 (Magnetite) 與表面活性劑混合,經由長時間的研磨而形成超微細之顆粒 (粒徑在10 nm以下),並使表面活性劑被覆於顆粒表面,使磁性顆粒安定分散於溶媒中,形成磁性流體。由於磁性流體具有許多特殊的物理性質,如在外加磁場的作用下,磁性流體可固著於轉動軸與軸套部份之間成為液體軸承,可完全密封,且無摩擦及熱產生;亦可作潤滑油,硬碟機之塵封元件,揚聲器之阻尼器等。
  本研究利用化學共沉法合成奈米級粒徑的Mn/Zn鐵氧化物粉末,在室溫下,將0.5 M之Mn2+、Zn2+和Fe3+ 溶液先予混合,〔(Mn2++Zn2+)/Fe3+ = 1/2〕,再將2 M之NaOH溶液,以5 ml/min的速率緩慢滴入混合液中,同時使用直棒型攪拌子以500 rpm轉速攪拌,進行共沉反應,在pH值達到10左右完成共沉。所產生的錳鋅鐵氧化物經48小時之陳化,粒徑約為12 nm,經X光繞射鑑定得知為尖晶石相,飽和磁化量可達50 emu/g左右。磁化曲線的測定結果顯示無殘留磁化量 (Br),亦無矯頑磁力 (Hc),呈現超順磁性之性質。
  共沉反應所得之錳鋅鐵氧化物經過濾及淋洗,去除殘餘之未反應陰、陽離子後,在pH 10下,添加適量的油酸,可在顆粒表面達成化學與物理方式之雙層吸附,獲得安定分散之水基磁性流體。水基磁性流體可以酒精為替換媒介將水去除,再轉換成煤油為介質之油基磁性流體。由表面活性劑之吸附測定顯示,水基磁性流體之穩定是由表面活性劑之雙層吸附造成,而油基磁性流體為單層吸附。
油基磁性流體之固體重量濃度為63%∼67%,其黏度為37.70∼55.40 mPa.s,呈現牛頓流體之行為,顯示已經完全分散。
  Magnetic fluid is a suspension of nano-sized magnetic particles in water or organic solvents. The magnetic particles are first coated with proper surfactant so as to be dispersed in the solvent and will not settle or flocculate in the magnetic or gravitational field. When subjected by a magnetic field, the ultra-fine particles will move to the higher gradient region. In the same time the fluid is also carried with the particles to move. Thus it behaves like a solid ferromagnetic body, such as iron and nickel, but it is liquid. Therefore the magnetic fluid has both magnetic and liquid-like characteristics.
Papell of NASA invented magnetic fluid in the 1960’s by very long time grinding of a magnetite and surfactant mix to make magnetite particles below 10 nm. Magnetic fluid has many specific physical characteristics. Under magnetic field, magnetic fluid can be fixed between the rotating axis and casing and becomes a liquid bearing. It doesn’t produce friction and heat, can be used as lubricating fluid, dust-proof component of computer hard disks, dampers of loudspeakers, etc.
  This study utilized co-precipitation to synthesize nano-sized Mn/Zn ferrite particles. At room temperature, 0.5 M Mn2+, Zn2+, Fe3+ solutions were mixed〔(Mn2++Zn2+)/Fe3+ = 1/2〕, then 2 M NaOH solution was titrated into Mn/Zn/Fe solutions at the rate of 5 ml/min, while the solution was constantly stirred using a magnet bar at 500 rpm. The co-precipitation reaction proceeded until the pH value reached 10. After aged for 48 hours, the particle sizes of the Mn/Zn ferrite obtained are around 12 nm. The X-ray diffraction analysis showed that the crystal is of spinel form. The saturated magnetization is about 50 emu/g. The hysteresis curves show that there is no retentivity (Br) and coercivity (Hc), i.e. it displays superparamagnetism.
  After filtering and washing to eliminate residual cation and anion, the wet Mn/Zn ferrite slurry at pH 10 was added with proper amount of oleic acid. Well-dispersed stable magnetic fluid can be obtained. The water-based magnetic fluid can be transformed to kerosene-based using alcohol as a intermediate media. The adsorption isotherm of oleic acid showed that the water-based magnetic fluid is stabilized by double layer coverage, while the oil-based magnetic fluid is by single layer coverage.
  The solid weight concentration of the oil-based magnetic fluid between 63%∼67%, and the viscosity between 37.70∼55.40 mPa.s. The fluid displays a Newtonian behavior showing complete dispersion.
總 目 錄

摘要 ………………………………………………………Ⅰ
Abstract …………………………………………………Ⅲ
表目錄 ……………………………………………………Ⅷ
圖目錄 ……………………………………………………Ⅸ
致謝 ……………………………………………………ⅩⅠ

第一章 緒論 ………………………………………………1
1.1 研究背景 ………………………………………………1
1.2 研究目的 ………………………………………………3

第二章 理論背景與前人研究 ……………………………5
2.1 尖晶石型鐵氧化物之構造與特性 ……………………5
2.2 奈米磁粒之磁性 ……………………………………10
2.2.1 單磁區之形成 ……………………………………10
2.2.2 奈米磁粒之超順磁性 ……………………………14
2.3 磁性流體之穩定 ……………………………………17
2.3.1 磁粒在溶媒中之懸浮與粒徑之關係 ……………17
2.3.2 磁粒間之作用與磁性流體之分散 ………………20
2.4 前人研究 ……………………………………………23

第三章 實驗材料與步驟 ………………………………27
3.1 材料 …………………………………………………27
3.2 步驟 …………………………………………………27
3.2.1 Mn/Zn 鐵氧化物之製備 …………………………27
3.2.2 磁性流體之製備 …………………………………29
3.3 性質分析 ……………………………………………29
3.3.1 共沉後溶液之離子濃度分析 ……………………29
3.3.2 共沉物結晶相分析 ………………………………29
3.3.3 共沉物粉末之粒徑測定 …………………………29
3.3.4 磁性測定 …………………………………………31
3.3.5 表面活性劑吸附等溫吸附曲線之量測 …………32
3.3.6 流變性質之測定 …………………………………32

第四章 結果與討論 ……………………………………33
4.1 奈米磁粒之製備 ……………………………………33
4.1.1 pH值對共沉物晶相及粒徑之影響 ………………33
4.1.2 起始溫度對共沉物晶相及粒徑之影響 …………42
4.1.3 離子莫耳比對共沉物性質之影響 ………………46
4.1.4 陳化對共沉物晶相及性質之影響 ………………51
4.2 磁性流體之製備 ……………………………………55
4.2.1 水基及油基磁性流體之穩定分散模型 …………55
4.2.2 油酸之等溫吸附曲線 ……………………………55
4.2.3 磁性流體自水基至油基之轉換過程 ……………58
4.2.4 油基磁性流體之流變性質及在外加磁場作用下之
特性 ………………………………………………59
第五章 結論 ……………………………………………65
參考文獻 …………………………………………………67
附錄A 總有機碳分析儀 (TOC) 量測表面活性劑濃度之
步驟 ………………………………………………73
附錄B DV-Ⅲ型錐盤流變儀之量測步驟 ………………78
附錄C 磁性流體製備過程中各階段之外觀變化 ………82
附錄D 實驗之分析數據 …………………………………87



表 目 錄

表2.1 Mn/Zn鐵氧化物之性質 …...………………………………………..10
表2.2 強磁性體呈單磁區構造之臨界粒徑 ………………………………12
表3.1 本研究所使用之化學藥劑及其用途 ………..……………………..28
表4.1 在不同pH值下所得共沉物之平均粒徑
(共沉條件:(Mn2++Zn2+)/Fe3+ = 2/3,室溫) ……..……………………38
表4.2 在不同pH值下所得共沉物之飽和磁化量
(共沉條件:(Mn2++Zn2+)/Fe3+ = 2/3,室溫下) ………………………..40
表4.3 在不同起始溫度下共沉所得共沉物之平均粒徑
(共沉條件:(Mn2++Zn2+)/Fe3+ = 2/3,pH = 10) ………………………44
表4.4 在不同起始溫度下共沉所得共沉物之飽和磁化量
(共沉條件:(Mn2++Zn2+)/Fe3+ = 2/3,pH = 10) ……………………….44
表4.5 離子莫耳比所得共沉物之飽和磁化量
(共沉條件:pH = 10,室溫下) ………………………………………..45
表4.6 不同之陳化時間所得共沉物之平均粒徑
(共沉條件:(Mn2++Zn2+)/Fe3+ = 1/2,pH = 10,室溫下) ……………...52
表4.7 不同之陳化時間所得共沉物之飽和磁化量
(共沉條件:(Mn2++Zn2+)/Fe3+ = 1/2,pH = 10,室溫下) ……………...52
表4.8 磁性流體添加油酸後的分散觀察結果 ……………………………57



圖 目 錄

圖2.1 尖晶石之結晶構造 ………………………………………………….6
圖2.2 正尖晶石與逆尖晶石的磁性結構:(a)逆尖晶石型之鐵氧化物MFe2O4;(b)正尖晶石型之錳鐵氧化物MnFe2O4;(c)正尖晶
石型之鋅鐵氧化物ZnFe2O4 ………………………...…….………...8
圖2.3 不同元素之鐵氧化物中加入鋅鐵氧化物後,其飽和磁化值之變
化 ………………..…………………………………………………...9
圖2.4 單磁區磁粒之磁矩 ………………………………………………....11
圖2.5 單磁區與雙磁區磁粒之構造 (m為磁粒之磁矩) ………………..13
圖2.6 易向軸及飽和磁化方向之夾角與磁異向能 (Magnetoanisotropy energy) 之關係 ……………………………………………………15
圖2.7 真矯頑磁力 (Hci) 與磁粒粒徑之關係 ……………………………18
圖2.8 磁性流體中磁粒在磁場作用下運動之情況 ………………………19
圖2.9 磁粒間之磁吸引作用 (m為磁粒之磁矩) …………………………21
圖2.10 表面活性劑吸附之模式圖 ………………….…………………….22
圖2.11 各作用能與磁粒間距離之變化 (δ為表面活性劑之分子長度) ....24
圖3.1 磁性流體之製備流程 ………………………………………………30
圖4.1 在不同pH值下所得共沉物之X光繞射圖
(掃描速度為0.04°/sec,掃描角度 (2θ) 範圍為20-90°) ………..34
圖4.2 在不同pH值下所得共沉物之TEM照片 ………………………....35
圖4.3 在不同pH值下所得共沉物之電子繞射圖 ………………………..36
圖4.4 在不同pH值下所得共沉物之磁化曲線 ….…………………….…39
圖4.5 在不同pH值下所得共沉物之Mn2+、Zn2+及2+離子殘留率 ………41
圖4.6 在不同起始溫度下所得共沉物之TEM照片 ……………………..42
圖4.7 在不同起始溫度下共沉所得共沉物之X光繞射圖
(掃描速度為0.04°/sec,掃描角度(2θ)範圍為20-90°) …………..43
圖4.8 離子莫耳比所得共沉物之Mn2+、Zn2+及Fe3+離子殘留率
(pH = 10,室溫下) …………………………………………….……46
圖4.9 離子莫耳比所得共沉物之X光繞射圖
(掃描速度為0.04°/sec,掃描角度(2θ)範圍為20-90°) …………47
圖4.10 離子莫耳比所得共沉物之TEM照片
(共沉條件:(Mn2++Zn2+)/Fe3+ = 2/5、2/3、1/2、3/4,pH = 10,室溫下) ………………………………………………………………...….48
圖4.11 不同陳化時間所得共沉物之X光繞射圖
(掃描速度為0.04°/sec,掃描角度(2θ)範圍為20-90°) ………….50
圖4.12 不同陳化時間所得共沉物之TEM照片 …………………………51
圖4.13 下飯土反所提出的磁性流體製備之模式圖…………..………..……54
圖4.14 本研究製備磁性流體時,由水基轉換成油基之模式圖 …………55
圖4.15 油酸在磁鐵礦表面之等溫吸附曲線。
(磁鐵礦粉末之比表面積≒3.6 m2/g,廠牌:Nacalai Tesque) ……..56
圖4.16 油基磁性流體之切變率 (Shear Rate) 及切應力 (Shear Stress) 之關係。
( :商用磁性流體; 、 、 、 :本研究製備之磁性流體) ……..……59
圖4.17 油基磁性流體之黏度及固體重量濃度之關係圖…………………60
圖4.18 磁性流體在外加磁場作用下之特殊現象 ………………………..61
參考文獻

1. 蔡煥修,“磁性流體製程與性質之基礎研究,” 國
 立成功大學礦冶及材料科學研究所碩士論文,1992。
2. 蔡敏行、蔡煥修,“磁性流體之製備與特性研究,”
礦冶,37,2,pp.115-124,1993。
3. 黃忠良,“磁性流體理論應用,” 復漢出版社印行,
1989。
4. Papell, S. S., “Manufacture of
Magnetofluids,” U. S. Patent, No.3215527,
1965.
5. 葉思武,“磁性流體及其應用(上),” 機械月刊,
11,10,pp.233-239,1985。
6. 葉思武,“磁性流體及其應用(中),” 機械月刊,
11,11,pp.155-161,1985。
7. 葉思武,“磁性流體及其應用(下),” 機械月刊,
11,12,pp.188-193,1985。
8. 唐敏注,“通訊用軟磁材料之特性及應用,” 工業
材料,105,pp.42-50,1995。
9. Soohoo, R. F., Theory and Application of
Ferrites, Prentice-Hall, New Jersey, 1960.
10. Goldman, A., Handbook of Modern Ferromagnetic
Materials, Kluwer Academic, Massachusetts,
1999.
11. 岡本祥一、近桂一郎,“磁性陶瓷,” 復漢出版社
印行,2001。
12. Goldman, A., Modern Ferrite Technology, Van
Nostrand Reinhold, New York, 1990.
13. 鄭武輝、廖錦聰,“簡介鐵氧磁體,” 工業技術,
27,pp.24-32,1976。
14. 下飯土反潤三, “粉体ソ液相中ズれんペ凝集分
散,” 粉体れプヂ粉末冶金, 12, 6, pp.263-274,
1966.
15. 下飯土反潤三、中塚勝人、中缽良治、左藤惟陽,
“磁性流體ソ製造シガソ性質ズコゆサ,” 粉体れプ
ヂ粉末冶金, 22, 1, pp.22-26, 1975.
16. Reimers, G. W. and S. E. Khalafalla,
“Production of dilution-stable aqueous
magnetic fluids,” IEEE Transactions on
Magnetics, Vol.16, No.2, pp.178-183, 1980.
17. McCurrie, R. A., Ferromagnetic Materials
Structure and Properties, Academic
Press Inc., San Diego, 1994.
18. Verwey, E. J., P. W. Haayman and F. C.
Romeijn, “Physical properties and
cation arrangement of oxides with spinel
structures: Ⅱ.Electronic
conductivity,” Journal of Chemical Physics,
Vol.15, No.4, pp.181-187, 1947.
19. Verwey, E. J. W., and E. L. Heilmann,
“Physical properties and cation
arrangement of oxides with spinel structures:
Ⅰ.Cation arrangement in spinels,” Journal
of Chemical and Physical, Vol.15, No.4,
pp.174-180, 1947.
20. Standley, K. J., Oxide Magnetic Materials,
2nd ed., Oxford University Press, London,
1972.
21. Upadhyay, R. V., K. J. Davies, S. Wells and
S. W. Charles, “Preparation
and characterization of ultra-fine MnFe2O4
and MnxFe1-xO4 spinel systems:
Ⅱ.Magnetic fluids,” Journal of Magnetism
and Magnetic Materials, Vol.139, pp.249-254,
1995.
22. Cullity, B. D., Introduction to Magnetic
Materials, Ch.7 and 11, Addison-Wesley Co.,
1972.
23. Nikolov, J., I. Dragieva, G. Georgiev and D.
Angelov, “Monocrystal Mn-Zn ferrite and its
application in magnetic heads,” Journal of
Magnetism and Magnetic Materials, Vol.101,
pp.137-139, 1991.
24. Reece, M. J. and D. J. Barber, “Electron
microscopy of second phases in manganese-zinc
ferrite crystals,” Journal of Materials
Science, Vol.22, pp.2447-2456, 1987.
25. Heck, C., Magnetic Materials and Their
Applications, Butterworths, London, 1974.
26. Snelling, E. C., Soft Ferrites:Properties
and Applications, Butterworths,
London, 1988.
27. Rath, C., K. K. Sahu, S. Anand, S. K. Date,
N. C. Mishra and R. P. Das,“Preparation and
characterization of nanosize Mn-Zn ferrite,”
Journal of Magnetism and Magnetic Materials,
Vol.202, pp.77-84, 1999.
28. Rosensweig, R. E., Ferrohydrodynamics, Ch.2,
Press Syndicate of the University of
Cambridge, London, 1985.
29. Chikazumi, S., S. Taketomi, M. Ukita, M.
Mizukami, H. Miyajima, M.Setogawa, and Y.
Kurihara, “Physics of magnetic fluids,”
Journal of Magnetism and Magnetic Materials,
Vol.65, pp.245-251, 1987.
30. Bitter, F., “On inhomogeneities in the
magnetization of ferromagnetic materials,”
Physical Review, Vol.38, pp.1903, 1931.
31. Elmore, W. C., “Ferromagnetic colloid for
studying magnetic structure,”Physical
Review, Vol.54, No.4, pp.309-310, 1938.
32. Kneller, E. F. and F. E. Luborsky,“Particle
size dependence of coercivity and remanence
of single-domain particles,” Journal of
Applied Physics, Vol.34, pp.656-658, 1963.
33. Jeyadevan, B., K. Tohji, K. Nakatsuka and A.
Narayanasamy, “Irregular distribution of
metal ions in ferrites prepared by co-
precipitation technique structure analysis of
Mn-Zn ferrite using extended X-ray absorption
fine structure,” Journal of Magnetism and
Magnetic Materials, Vol.217, pp.99-105, 2000.
34. Zins, D., V. Cabuil and R. Massart, “New
aqueous magnetic fluids,”
Journal of Molecular Liquids, Vol.83, pp.217-
232, 1999.
35. 高小娟,“反應後溶液pH調整對酒石酸鹽合成Li-
Ferrite之熱反應特性分析,”國立成功大學資源工
程研究所碩士論文,2001。
36. Allen, T., Particle Size Measurement, 3rd
ed., Chapman&Hall, New York, 1981.
37. 呂維明、戴怡德,”粉粒體粒徑量測技術,” 高立
圖書有限公司,1998。
38. 中缽良治、中塚勝人、下飯土反潤三, “水м一磁性
流体ソズ安定性ズ對エй溫度, pHソ影響,” 粉体れ
プヂ粉末冶金, 23, 6, pp.21-25, 1976.
39. Myers, D., Surfaces, Interfaces, and
Colloids, VCH Publishers Inc., New
York, 1991.
40. Rosen, M. J., Surfactants and Interfacial
Phenomena, 2nd ed., John Wiley&Sons, New
York, 1989.
41. Fuerstenau, D. W., Froth Flotation 50th
Anniversary Volume, American
Institute of Mining, Metallurgical, and
Petroleum Engineers, New York, 1962.
42. Fuerstenau, M. C., J. D. Miller and M. C.
Kuhn, Chemistry of Flotation,
American Institute of Mining, Metallurgical,
and Petroleum Engineers, Inc.,
New York, 1985.
43. Jeyadevan, B., K. Tohji, K. Nakatsuka and K.
Nakatsuka, “Structure
analysis of coprecipitated ZnFe2O4 by
extended x-ray-absorption fine
structure,” Journal of Applied Physics,
Vol.76, No.10, pp.6325-6327, 1994.
44. Everett, D. H., Basic Principles of Colloid
Science, the Royal Society of
Chemistry, London, 1998.
45. Ralston, A. W., Fatty Acids and Their
Derivations, John Wiley&Sons, New York, 1948.
46. Markley, K. S., Fatty Acids, Interscience
Publishers Inc., New York, 1947.
47. Lutton, E. S., “Oil&Soap,” American Oil
Chemists’ Society, Vol.23,
pp.265-266, 1946.
48. Barth, H. G., Modern Methods of Particle Size
Analysis, Wiley, New York, 1984.
49. Kittel, C., J. K. Galt and W. E. Campbell,
“Crucial experiment demonstrating single
domain property of fine ferromagnetic
powders,”Physical Review, Vol.77, pp.725,
1950.
50. Sohnel, O. and J. Garside, Precipitation-
basic Principles and Industrial
Applications, Butterworth-Heinemann,
Menchester, 1992.
51. Mackor, E. L., “A theoretical approach of
the colloidal-chemical stability
of dispersions in hydrocarbons,” Journal of
Colloid Science, Vol.6, pp.492-495, 1951.
52. 許樹恩、吳泰伯,“X光繞射原理與材料結構分
析,” 中國材料科學學會,1996。
53. Cullity, B. D., Element of X-ray Diffraction,
2nd ed., Addison-Wesley, London, 1978.
54. 近角聰信,“磁性物理學,” 聯經公司出版,
1982。
55. 王淀佐、胡岳華,“浮選溶液化學,” 湖南科學技
術出版社,1988。
56. 盧壽慈,“礦物浮選原理,” 武漢鋼鐵學院,
1988。
57. Kaibara, K., E. Iwata, Y. Eguchi, M. Suzuki,
and H. Maeda, “Dispersion behavior of oleic
acid in aqueous media: from micelles to
emulsions,”Colloid&Polymer Science,
Vol.275, No.8, pp.777-783, 1997.
58. Venkataramani, B., K. S. Venkateswarlu and J.
Shankar, “Sorption properties of oxides:
Ⅲ.Iron oxides,” Journal of Colloid and
Interface Science, Vol.67, No.2, pp.187-194,
1978.
59. Agarwal, B. K., X-ray Spectroscopy, 2nd ed.,
Springer-Verlag, New York, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔