跳到主要內容

臺灣博碩士論文加值系統

(3.87.250.158) 您好!臺灣時間:2022/01/25 19:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁建楠
研究生(外文):Jian-Nan Ding
論文名稱:InAlGaAs/InGaAs/InAlGaAs異質結構場效電晶體之特性
論文名稱(外文):Characteristics of InAlGaAs/InGaAs/InAlGaAs Heterostructure Field-Effect Transistors
指導教授:許渭州
指導教授(外文):Wei-Chou Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:77
中文關鍵詞:四元場效電晶體
外文關鍵詞:InAlGaAsHEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:0
在本文中,我們研究了以分子束磊晶法成長的四元InAlGaAs/InGaAs/InAlGaAs 異質結構場效電晶體的特性。當四元化合物InAlGaAs層被使用時,因為鋁原子數量被減少,所以特性被改善是可以期待的。
我們利用濕蝕刻的方式薄化蕭基層,因而有效的改善了元件的效能。由實驗結果顯示,較薄的蕭基層增進了元件的夾止特性並提高異質轉導值。在閘極長度為1.5�慆時,最大的異質轉導值為165mS/mm,而在Vgs=2V時汲極電流密度為241mA/mm。而增強式異質結構電晶體最大的異質轉導值為127mS/mm,而在Vgs=2V時汲極電流密度為180mA/mm。
InAlGaAs/InGaAs/InAlGaAs 異質結構場效電晶體的高頻、功率、雜訊特性也被討論。其截止頻率為14.5GHz,最大震盪頻率為25.8GHz。元件輸出功率為15.56dBm,相當於180mW/mm,而相關的附加功率效率為62.6%,線性功率增益為12.6dB。當元件操作在2.4GHz時,其最小雜音指數為1.9dB,增益為12.82dB。
In this thesis, the characteristics of the quaternary InAlGaAs/InGaAs/InAlGaAs heterostructure field-effect transistors grown by molecular beam epitaxy (MBE) have been studied. An improvement in the quaternary InAlGaAs layer can be expected by degrading the Al atom.
By wet etching the InAlGaAs Schottky layer, the device performance can be improved. The results show that the thinner Schottky layer enhances the pinch-off characteristics and the extrinsic transconductance obviously. The maximum extrinsic transconductance is 165mS/mm, and the saturation drain current density is 241mA/mm at VGS=2V for gate length of 1.5�慆. The maximum extrinsic transconductance for the enhancement-mode FET is 127mS/mm, and the saturation drain current density is 180mA/mm at VGS=2V.
The microwave, power, noise performances of the InAlGaAs/InGaAs/InAlGaAs heterostructure field-effect transistors have also been described. The current gain cut-off frequency (ft) and maximum oscillation frequency (fmax) are 14.5GHz and 25.8GHz, respectively. The device exhibited an output power of 15.56dBm which corresponding to 180mW/mm. The associated power-added efficiency is 62.6%, and the linear power gain is 12.6dB. The device exhibited a minimum noise figure as 1.9dB with 12.82dB for the gain at 2.4GHz.
Abstract (Chinese)
Abstract (English)
Figure Caption
Table Caption
Chapter 1 Introduction 13
Chapter 2 Molecular Beam Epitaxy System 16
2-1 System introduction
2-2 Source 17
2-3 Growth Rate
2-4 Beam Flux Monitor and Substrate Heater
2-5 Cryoshroud and Mass Spectrometer 18
2-6 RHEED and Phosphor Screen
Chapter 3 Device Growth and Fabrication 19
3-1 HEMT Structure Layer Design 19
3-2 Material Growth 23
3-2-1 Sample A
3-2-2 Sample B
3-3 Hall Mearsurement 24
3-4 Device Fabrication 25
3-4-1 Sample orienting
3-4-2 Mesa isolation
3-4-3 Source and drain ohmic contact formation 26
3-4-4 Gate Schotky contact formation
Chapter 4 Experimental Results 28
4-1 Sample A 28
4-1-1 DC Characteristics
4-1-2 Temperature Characteristics 31
4-2 Sample B (enhancement-mode) 33
4-3 RF Characteristics 35
4-4 Power Characteristics 36
4-5 Noise Characteristics 37
Chapter 5 Conclusion 38
References 40
[1] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.
[2] G. C. Dacey and I. M. Ross, “Unipolar field-effect transistor,” Proc. IRE 41, 970
(1953).
[3] T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “a new Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions”, Jap. J. Appl. Phys. vol.19, no. 5, pp.L225-L227, 1980.
[4] S. Karmalkar, G. Ramesh, “A simple yet comprehensive unified physical model of the 2D electron gas in delta-doped and uniformly doped high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 47, pp.308, 2000.
[5] Y. Ando, T. Itoh, “Accurate modeling for parasitic source resistance in two-dimensional electron gas field-effect transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1036, 1989.
[6] L. D. Nguyen, W. J. Schaff, P. J. Tasker, A. N. Lepore, L. F. Palmateer, M. C. Foisy, L. F. Eastman, “Charge control, DC, and RF performance of a 0.35 um pseudomorphic AlGaAs/InGaAs modulation-doped field-effect transistor,” IEEE Trans. Electron Devices, vol. 35, pp. 139, 1988.
[7] Y. J. Chan, C. S. Wu, C. H. Chen, J. L. Shieh, J. I. Chyi, “Characteristics of a In0.52(AlxGa1-x)0.48As/In0.53Ga0.47As (0[8] C. Y. Chang, Francis Kai, “GaAs High-Speed Devices”, John Wiely and Sons, New York,1994.
[9] William Liu, “Handbook of III-V Heterojunction Bipolar Transistors”, John Wiely and Sons, New York,1998.
[10] Fazal Ali and Alitya Gupta, “HEMTs and HBTs; Devices, Fabrication, and Circuits”, p.82
[11] M.Hueschen, N. Moll, E. Gowen, and J.Miller, “Pluse Doped MODFET’s”, IEEE, IDEM Technical Digest, p.438, 1984.
[12] A. Fathimulls, J.Abrahams, T. Loughran, H. Hier, “High performance InAlAs/InGaAs HEMTs and MESFETs”, IEEE Electron Device Letters, vol.28,no. 19, p1849,1992.
[13] S.R. Bahl, J. A. del Alamo, “Elimination of mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, IEEE Trans. On Electron Devices, vol. 13, no. 4, p.195, 1992.
[14] S. R. Bahl, M. H. Leary, J. A. del Alamo, “Mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, IEEE Trans. on Electron Devices, vol. 39, no. 9, p.2037, 1992.
[15] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, H. M. Shieh, “Charactezation of high performance inverted delta modulation doped (IDMD) GaAs/InGaAs psedomophic heterostructure FETs”, IEEE Trans. on Electron Devices, vol 9, no. 1, p22, 1993.
[16] G. I. Ng, W. P. Hong, D. Pavlidis, M. Tutt, P. K. Bhattacharya, “Characteristics of stained InGaAs/InAlAs HEMT with optimized transport parameters”, IEEE Electron Device Letters, vol. 9, no. 9, p439, 1988.
[17] S. R. Bahl, B. R. Bennett, J. A. Alamo, “Doubly stained InAlAs/n-InGaAs HFET with high breakdown voltage”, IEEE Electron Device Letters, vol. 14, no. 1, p. 22, 1993.
[18] W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, H. J. Pan, “Temperature-Dependent Investigation of a High-Breakdown Voltage and Low-Leakage Current In0.49Ga0.51P/In0.15Ga0.85As Pseudomorphic HEMT”, IEEE Electron Device Letters, vol. 20, p. 274, 1998.
[19] R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMTs”, IEEE Microwave and Guided Wave Lett., vol. 7, pp. 3, 1997.
[20] M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25um gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol 43, pp.852, 1996.
[21] R.E. Anholt, S. E. Swirhum, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuits”, IEEE Trans. Electron Devices, vol 39, pp.2029, 1992.
[22] A. Belache, A. Vanoverschelde, G. Salmer, M. Wolny, “Experimental analysis of HEMT behavior under low-temperature conditions”, IEEE Trans. Electron Devices, vol 38, pp. 3, 1991.
[23] J. P. Ao, Q. M. Zeng, Y. L. Zhao, X. J. Li, W. J. Liu, S. Y. Liu, C. G. Liang, “InP-Based Enhancement-Mode Pseudomorphic HEMT with Strained In0.45Al0.55As Barrier and In0.75Ga0.25As Channel Layers”, IEEE Electron Device Letters, vol. 21, p. 200, 2000.
[24] T. Mimura, K. Joshin, S. Kuroda, “Device Modeling of HEMTs”, Extracted from FUJISU Scientific and Technical Journal vol. 19, no. 3, 15, September 1983.
[25] C. L. GHOSH, R.L. LAYMAN, “GaAs MESFET’s with Ga1-xAlxAs Buffer Layers”, IEEE Electron Device Letters, vol. 5, p. 3, 1984.
[26] T. Ishikawa, J. Satio, S. Sasa, S. Hiyamizu, “Electrical Properities of Si-Doped AlxGa1-xAs Layers Grown by MBE”, J.J.A.P. vol.21, no.11, p675, 1982
[27] J. Saito, K. Nanbu, T. Ishikawa, S. Hiyamizu, “Dependence of the Mobility and the Concentration of Two-Dimensional Electron Gas in Selectively Doped GaAs/N-AlxGa1-xAs Heterostructure on the AlAs Mole Fraction”, J.J.A.P., vol.22, no.2, p79, 1983.
[28] W. Kopp, H. Morkoc, T. J. Drummond, S.L. SU, “Characteristics of Submicro Gate GaAs FET’s With Al0.3Ga0.7As Buffers:Effects of Interface Quality”, IEEE Electron Device Letters, vol. 3, no.2, p.46, 1982.
[29] A. Ketterson, M. Moloney, W.T. Masselink, C.K. Peng, J. Klem, R. Fisher, W.Kopp, H. Morkoc, “High Transconductance InGaAs/AlGaAs Pseudomorphic Modulation-Doped Filed-Effect Transistors”, IEEE Electron Device Letters, vol. 6,no. 12, p. 628, 1985.
[30] A. Thomasian, A. A. Rezazadeh, L.G. Hipwood, “Observation and Mechanism of Kink Effect in Depletion-Mode AlGaAs/GaAs and AlGaAs/InGaAs HEMTs”, Electronsic Letters, vol. 25, no. 5, 1989.
[31] L. D. Nguyen, P. J. Tasker, D. C. Radulescu, L. F. Eastman, “Characterization of Ultra-High-Speed Pseudomorphic AlGaAs/InGaAs (on GaAs) MDFET’s”, IEEE Trans. Electron Devices, vol 36, pp. 2243, 1989.
[32] J. Dickmann, H. Daembkes, H. Nickel, W. Schlapp, R, Losch, “Double-Side Planner-Doped AlGaAs/InGaAs/AlGaAs MODFET with Current Density of 1A/mm”, IEEE Electron Device Letters, vol. 12, p. 327, 1991.
[33] W. C. Hsu, H. M. Shieh, C. L. Wu, T. S. Wu, “A High Performance Symmetric Double ��-Doped GaAs/InGaAs/GaAs Pseudomorphic HFET’s Grown by MOCVD”, IEEE Trans. Electron Devices, vol 41, pp. 456, 1994.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top