跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林世庭
研究生(外文):Shr-Ting Lin
論文名稱:磷化銦鎵/砷化鎵異質接面電晶體中電流增益暫態現象之研究
論文名稱(外文):The Transient Effect of Current Gain in InGaP/GaAs HBTs
指導教授:王永和王永和引用關係洪茂峰洪茂峰引用關係
指導教授(外文):Yeong-Her WangMau-Phon Houng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:69
中文關鍵詞:暫態現象異質接面電晶體
外文關鍵詞:Transient effectHeterojunction bipolar transistor.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著無線通訊的蓬勃發展,許多微波元件所扮演的角色也愈加重要,異質接面電晶體(HBT)更是RF-IC電路中功率放大器的主要元件。在異質接面的材料選擇中,磷化銦鎵/砷化鎵(InGaP/GaAs)以其較佳的能帶結構及特性逐漸取代砷化鋁鎵/砷化鎵(AlGaAs/GaAs)的結構。在本文中,我們利用同一組光罩成功製作出普通結構以及自動校準(self-aligned)結構之InGaP/GaAs異質接面電晶體.利用自動校準之技術,電晶體的射極與基極的間距從10um縮減為小於1um,有效的減少基極外曝面積以減少基極表面復合電流,獲致更大的電流增益。在我們的元件特性中,電流增益在固定偏壓下會顯現逐漸增大的暫態現象,我們利用改變射極(Emitter)及基極(Base)的間距,觀察電晶體的射極面積效應(Emitter Size Effect),以及其他電性量測分析判斷造成暫態之原因,在利用不同的定電壓應力(voltage stress)去找出消除暫態現象的最佳方法,我們也利用對元件施以熱處理的方式改善暫態現象,在元件承受不了太高的溫度下(>600℃),熱處理並沒辦法完全消除暫態現象,但在550℃熱處理下卻能得到縮短暫態的時間以及配合電壓應力消除暫態現象後不再復發的功用。
最後,在我們研製的電晶體中,所獲得之電流增益約為120,補償電壓(offset voltage)約為100mV,起始電壓(turn-on voltage)為1.14V以及崩潰電壓(break down voltage)約為15V。
With the development of the wireless communication, microwave devices play a very important role; the heterojunction bipolar transistors are the devices currently of the power amplifiers in RF-IC circuit. By the selectivity of the heterostructure material, InGaP/GaAs have replaced AlGaAs/GaAs because of it’s better structure of band gap and characteristics. In this thesis, we use the same masks to accomplish the normal structure and self-aligned structure InGaP/GaAs HBTs. The self-aligned technology reduced the emitter-base space from 10um to within 1um. HBT with smaller extrinsic base area, which decrease the surface recombination current and obtain the larger current gain. In our device, the current gain will increase gradually, which is called transient effect, when we give the HBT a fixed bias. We changed the space between emitter and base, observed the emitter size effect of HBT, and some electric measurement to identify the reason of the transient effect; moreover, we used several voltage stress conditions to find the optimum condition to annihilate the transient effect. We also treated the devices with thermal annealing to improve the transient effect. The transient effect can not be annihilated by annealing because the device can’t tolerate the temperature that is too high(>600℃), but the thermal annealing at 550℃ can decrease the interval of transient effect and annihilate the reproducible phenomenon when device followed a voltage stress to annihilate the transient effect.
Finally, we obtain the characteristics of HBT with current gain ~ 120, the offset voltage ~ 100mV, turn-on voltage ~ 1.14V, and break down voltage ~ 15V.
Abstract I
Table Captions V
Figure Captions VI
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization 3
Chapter 2 Fundamental of Heterojunction Bipolar Transistor 5
2.1 Introduction 5
2.2 Performance Evaluation of HBT’s 6
2.3 Degradation Mechanism of d.c. Current Gain 8
2.3.1 Recombination Processes 8
2.3.2 Base Dopants 11
Chapter 3 Sample Preparation 18
3.1 Fabrication of the InGaP/GaAs HBTs 18
3.1.1 Normal structure structures HBTs 18
3.1.2 Self-aligned structures HBTs 22
3.1.3 comparison and summary 24
3.2 Measurement 24
3.3 D.C. Characteristics of InGaP/GaAs HBT 25
Chapter 4 Transient Effect of the InGaP/GaAs HBT 36
4.1 Introduction of Transient Effect 36
4.1.1 Analysis of the transient effect-Surface recombination related 36
4.1.2 Analysis of the transient effect-Bulk recombination related 38
4.2 Different Stress Condition for Transient Effect 39
4.3 Discussions and Approximate Physics Model for Transient Effect 41
Chapter 5 Thermal Treatment for Improving Transient Effect 56
5.1 Comparison of Transient Effect With and Without Thermal Treatment 56
5.2 Reproducible Phenomenon 57
5.3 The interval of stress after Thermal Treatment 59
Chapter 6 Conclusions and Future Works 64
6.1 Conclusions 64
6.2 Future Works 65
Reference 66
[1] Sze SM, High-speed semiconductor device. New York, Wiley, 1990.
[2] Pearton SJ, Ren F, Hobson WS, Abernathy CR, Masaities RL, Chakrabarti UK. Surface recombination on processed InGaP p-n junctions. Appl Phys Lett 1993, vol. 63, pp 3610-3612.
[3] Mooney PM, Deep donor levels (DX centers) in III-V semiconductors. J Appl Phys 1990, vol. 67, R1- R24.
[4] Plana R. Graffeuil J, Delage SL, Blanck H, Di Fortepoisson MA, Brylinski C, Chartier E. Low frequency noise in self-aligned GaInP/GaAs heterojunction bipolar transistor. Electronics Letters, 1992, vol. 28, pp. 2354-2355.
[5] Lothian JR, Kuo JM, Ren F, Pearton SJ. Plasma and wet chemical etching of InGaP. Journal of electronic materials 1992, vol. 21, pp. 441-445.
[6] Y. H. Chang, G. P. Li, Resolving degradation mechanisms in ultrahigh performance n-p-n heterojunction bipolar transistors. IEEE Trans. Dev. 1993, vol. 40, pp. 692-697.
[7] Sugahara, H.; Nagano, J.; Nittono, T.; Ogawa, K. Improved reliability of AlGaAs/GaAs heterojunction bipolar transistors with a strain-relaxed base. Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1993. Technical Digest 1993., 15th Annual , Oct. 1993, pp. 115 –118.
[8] A.A. Rezaazdeh, S.A. Bashar, H. Sheng, F.A. Amin, L. Cattani, and J.J. Liou. Bias and Temperature Stress Reliability of InGaP/GaAs HBTs. Reliability Physics Symposium, 2000. Proceedings. 38th Annual 2000 IEEE International , 2000, p.p. 250 –257.
[9] S.R. Bahl, L.H. Camnitz, D. Houng, M. Mierzwinski. Reliability Investigation of InGaP/GaAs Heterojunction Bipolar Transistors. IEEE Electron Device Letters, vol. 17, no. 9, 1996, pp 446-448.
[10] Jim Y. Chi, and Ke Lu, A Mechanism for Hydrogen-Related Transient Effect in Carbpn-Doped AlGaAs/GaAs Heterojunction Bipolar Transistors. IEEE Electron Device Letters, Vol. 19,NO. 11, November 1998, pp. 408-410.
[11] Mattia Borgarino, Robert Plana, Sylvain Laurent Delage, Fausto Fantini, and Jacques Graffeuil, Influence of Surface Recombination on the Burn-In Effect in Microwave GaInP/GaAs HBT’s. IEEE Transactions on Electron Devices, Vol. 46, No. 1, January 1999, pp 10-16.
[12] T. Henderson, V.Ley, T. Kim, T. Moise, D. Hill, Hydrogen-Related Burn-in GaAs/AlGaAs HBTs and Implications for Reliability, Electron Devices Meeting, 1996., International, 1996, pp. 203 –206.
[13] Borgarino, M., Tartarin, J.G., Delage, S., Plana, R.; Fantini, F., Graffeuil, J. Correlation between the burn-in effect and the extrinsic base surface quality in C-doped GaInP/GaAs HBTs. High Performance Electron Devices for Microwave and Optoelectronic Applications, 1997. EDMO. 1997 Workshop on, 1997, pp. 43 –48
[14] Driad, R.; Lu, Z.H.; Laframboise, S.; Scansen, D.; McKinnon, W.R.; McAlister, S.P. Surface passivation of InGaAs/InP beterostructures using UV-irradiation and ozone. Indium Phosphide and Related Materials, 1998 International Conference on, 1998 pp. 459 –462.
[15] Liu, W.; Beam, E.; Henderson, T.; Fan, S.-K. Extrinsic base surface passivation in GaInP/GaAs heterojunction bipolar transistors. IEEE Electron Device Letters , Vol. 14, Issue: 6 , June 1993, pp. 301-303.
[16] B.T. Cunningham; L. J. Guido; J. E. Baker; J. S. Major; N. Holonyak; Jr.; and G. E. Stillman, Carbon diffusion in undoped, n-type, and p-type GaAs, Appl. Phys. Lett. 55, 687-689 (1989).
[17] J. Shirakashi; T. Azuma; F. Fukuchi; M. Konagai; and K. Takahashi, Characterization of heavily carbon-doped GaAs with a hole concentration of the order of 1021 cm−3 grown by metalorganic molecular beam epitaxy and its application to InGaP/GaAs heterojunction bipolar transistors, J. Cryst. Growth, Vol. 150, 585-590 (1995).
[18] G. Benz and R. Conradt, Phys. Rev. B 16, 843 (1997).
[19] H. J. Queisser and M. B. Panish, J. Phys. Chem. Solids 28, 1177 (1967).
[20] J. L. Benchimol; F. Alexandre; C. Dubon-Chevallier, F. Heliot; R. Bourguiga; J. Dangla, and B. Sermage, Electon. Lett. 28, 1344 (1992).
[21] Q. Yang; D. S. Scott; T. Chung; and G. E. Stillman, Minority carrier lifetime degradation in carbon-doped base of InGaP/GaAs heterojunction bipolar transistors grown by low-temperature metalorganic chemical vapor deposition, Appl. Phys. Lett., Vol. 77, No. 2, July 2000, pp. 271-273.
[22] Hiroshi Fushimi; Kazumi Wada, The presence of isolation hydrogen donors in heavily carbon-doped GaAs, J. Cryst. Growth 145, 420-426 (1994).
[23] Kazuo Watanabe and Hajime Yamazaki, Annealing effect on the electrical properties of heavily C-doped P+ GaAs, Appl. Phys. Lett, Vol. 59, No. 4, July 1991, pp.434-436.
[24] Liu, W.; Harris, J.S., Jr., Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors, Electron Devices, IEEE Transactions on , Vol. 39, Issue 12 , Dec. 1992, pp. 2726 –2732.
[25] Fushimi, H.; Wada, K., Degradation mechanism in carbon-doped GaAs minority-carrier injection devices, Electron Devices, IEEE Transactions on , Vol. 44 ,Issue 11 , Nov. 1997, pp. 1996 –2001.
[26] Hackbarth, E.; Tang, D.D.-L., Inherent and stress-induced leakage in heavily doped silicon junctions, Electron Devices, IEEE Transactions on , Vol. 35 Issue 12, Dec. 1988, pp. 2108 –2118.
[27] A. J. Tavendale; S. J. Pearton; A. Williams; and D. Alexiev, Injection and drift of a positively charged hydrogen species in p-type GaAs, Appl. Phys. Lett., Vol. 56, 1990, pp. 1457-1459.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文