跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/29 15:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐碩賢
研究生(外文):Shuo-Hsien Hsu
論文名稱:II-VI族化合物半導體元件之結構與光特性探討
論文名稱(外文):The Structure and Optical Studies of II-VI Compound Semiconductor Devices
指導教授:陳志方藍文厚
指導教授(外文):Jone Fang ChenWen How Lan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:72
中文關鍵詞:ZnSe退火光激螢光譜量子井
外文關鍵詞:annealingZnSequantum wellPL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1157
  • 評分評分:
  • 下載下載:333
  • 收藏至我的研究室書目清單書目收藏:0
自從第一顆ZnSe系列的雷射完成後,綠光雷射二極體已成為二六族半導體異質結構研究的目標。 在許多研究團體達成ZnSe系列元件室溫下連續波操作的同時, 仍然有許多元件的生命週期的問題等待改進。
在我們的實驗中, 先集中於研究ZnCdSe/ZnSe以及ZnSe/GaAs介面的退火效應。 我們以光激螢光譜研究對不同數目下的ZnCdSe/ZnSe 量子井中的擴散效應以及在GaAs基板中Ga原子的擴散效應。 以分子束磊晶成長之量子井結構在250℃ to 650℃高溫回火。
根據此結果, 我們提出一種ZnSCdSe的量子井結構來改善對熱的穩定度以及壓制Cd原子的擴散。 再對於 ZnSSeTe中Ten-cluster的現象加以研究。 我們發現加入Te重摻雜之後的光性獲得改善以及發光能量增強並往短波長移動。 根據此現象我們將ZnCdSeTe此材料應用於量子井的主動層中不僅可以改善量子井的光特性而且也具有較佳的熱穩定度。 最後, 我們將此結果應用於 LED結構的量子井中並研究其光特性。
Abstract
Since the realization of the first ZnSe-based lasers in 1991 the development of blue emitting laser diodes has been the objective of II-VI heterostructure research. While several groups have achieved cw-operation of ZnSe-based devices at room temperature, the lifetime of such devices still remains a lot of problem to improve.
In ours experiment, we focus the annealing effect on ZnCdSe/ZnSe and ZnSe/GaAs interfaces first. We investigated the thermally induced interdiffusion in ZnCdSe/ZnSe quantum wells with the different number of wells and the outdiffusion of Ga atoms from the GaAs substrate by PL spectra. The quantum well structures grown by molecular beam expitaxy were thermally annealed at temperatures between 250℃ to 650℃. According to this result, we proposed the ZnSCdSe quantum well to improve the thermal stability and the Cd diffusion was suppressed. Than we study the optical property of the Ten-cluster Effects of ZnSSeTe. We found that the optical properties were improved by heavy Te doping, the peak intensity becomes much stronger and shift to lower energy. Applying to this Ten cluster effect, we use ZnCdSeTe as an active layer material which not only improves the optical of the quantum wells but also has the better thermal stability. Finally, a LED device applying the results in quantum wells is achieved and optical properties of LED were studies.
Contents
Abstract (Chinese) I
Abstract (English) III
Contents V
Figure Captions VII
Chapter 1 Introduction 1

Chapter 2 Theory and Measurement Techniques
2.1 Y-line 4
2.2 Excitons 4
2.3 Photoluminescence 5
Chapter 3 Experimental Arrangement 7
3.1 ZnSe growth 8
3.2 Wet etch 9
3.3 Photoluminescence (PL) characterization 9
3.4 SIMS (Secondary Ion Mass Spectroscopy) 10

Chapter 4 Results and Discussion
4.1 Optical studies of ZnSe 12
4.1.1 Different annealing temperature. 13
4.1.2 Intensity dependence of photoluminescence 15
4.2 Optical study of ZnSe/ZnCdSe MQWs 16

4.2.1. Different number of wells 17
4.2.2. Structure improvement of quantum well 19
4.3.1 The effect of Ten-cluster 22
4.3.2 Material improvement of quantum well 25
4.3.2. The Ten-cluster Effects to Devices 26
Chapter 5
Conclusions and future work 28
References

[01] P. J. Parbrook, M. Ishikawa, Y. Nishikawa, S. Satio, M. Onomura, and G. Hatakoshi, J. Cryst. Growth 150, 749 (1995)
[02] P. A. Murawala, O. Tsuji, S. Fujita, and S. fujita, Jpn. J. Appl. Phys., Part 1, 30, 3777 (1991)
[03] B, J, Skromme, W. Liu, K. F. Jensen, and K. P. Giapis, J. Cryst. Growth 138, 338 (1994)
[04] K. Wolf, S. Jilka, H. Sahiu, H. Stangl. T. Reisinger. A. Naumov, and W.Gebhardt. J.Cryst. Growth.
[05] K.Shahzad, J. Petruzzello, D.J. Olego, D. A. cammack, and J.M.Gaines. Appl. Phys. Lett. 57,2452 (1990)
[06] P. J. Dean: Phys. Status Solidi(a) 81 (1984) 625.
[07] S. Myhailenko,J. L. Batstone, H. J. Hutchinson and J. W. Steels: J. Phys. C17 (1984) 6477.
[08] Japanese Journal of Applied Physics Boli. 28. No. 1, January. 1989. pp. L 108-L111
[09] Journal of Crystal Growth 184/185 (1998) 183-187
[10] I. V. Bradley, W. P. Gillin, K. P. Homewood, and R. P. Webb, J. Appl. Phys. 73, 1686 (1993).
[11] 3 M. Momose, A. Taike, M. Kawata, J. Gotoh, and S. Nakatsuka, Appl. Phys. Lett. 69, 3572 (1996).
[12] A. D. Raisanen, L. J. Brillson, L. Vanzetti, A. Bonanni, and A. Franciosi, J. Vac. Sci. Technol. B 13, 1705 (1995).
[13] J. Qiu, D. R. Menke, M. Kobayashi, R. L. Gunshor, D. Li, Y. Nakamura, and N. Otsuka, Appl. Phys. Lett. 58, 2788 (1991).
[14] J. Gutowski, N. Presser, and G. Kudlek, Phys. Status Solidi A 120,11 (1990).
[15] G. Bacher, D. To¨nnies, D. Eisert, A. Forchel, M. O. Mo¨ller, M. Korn, B. Jobst, D. Hommel, G. Landwehr, J. So¨ller, and M. Heuken, . Appl. Phys. 79, 4368 (1996).
[16] S. Itoh, N. Nakayama, T. Ohata, M. Ozawa, H. Okuyama, K. Nakano, A. Ishibashi, M. Ikeda, and Y. Mori, Jpn. J. Appl. Phys., Part 2 32, L1530(1993).
[17] T. Yao, M. Kato, J. J. Davies, and H. Tanino, J. Cryst. Growth 86, 552(1988).
[18] C. D. Lee, H. L. Park, C. H. Chung, and S. K. Chang, Phys. Rev. B 45, 4491 (1992).
[19] M. J. S. P. Brasil, R. E. Nahory, F. S. Turco-Sandroff, H. L. Gilchrist, and R. J. Martin, Appl. Phys. Lett. 58, 2509 (1991).
[20] F. S. Turco-Sandroff, R. E. Nahory, M. J. S. P. Brasil, R. J. Martin, and H. L. Gilchrist, Appl. Phys. Lett. 58, 1611 (1991).
[21] Journal of Crystal Growth 214/215 (2000) 1096-1099
[22] C.S. Yang, D.Y. Hong, C.Y. Lin, W.C. Chou, C.S. Ro, W.Y. Uen, W.H. Lan, S.L. Tu, J. Appl. Phys. 83 (1998) 2555.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top