(3.215.180.226) 您好!臺灣時間:2021/03/09 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳碩懋
研究生(外文):Shuo-Mao Chen
論文名稱:基於基板耦合研究之射頻電感器的研製
論文名稱(外文):The Development of RF Inductor Based on the Study of the Substrate Coupling
指導教授:方炎坤方炎坤引用關係葉文冠葉文冠引用關係林志賢林志賢引用關係葉達勳
指導教授(外文):Yean-Kuen FangWen-KuanYehJason LinTa-Hsun Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:47
中文關鍵詞:基板耦合懸吊式電感器射頻電感器
外文關鍵詞:substrate couplingsuspended inductorRF inductor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基於基板耦合研究之射頻電感器的研製
陳碩懋*, 方炎坤**, 葉文冠**, 林志賢**, 葉達勳**
國立成功大學微電子所

摘要
矽晶(Silicon)是目前無線通訊應用中,較符合積體電路所需求之高度整合、低成本與成熟技術的製程材料之一。此外,整合在晶片上且無須額外打線的射頻電感器(RF Inductor),更是已經於系統整合晶片(SOC, System On Chip)上扮演重要的角色了。然而,對於矽晶片上的高頻元件,基板耦合效應已然成為混合訊號積體電路中類比與數位電路之間的重要課題。所以,吾人把建立於基板耦合研究基礎之高品質因素(Q factor)之射頻電感器的發展,列為本論文的主要目標。
此基板耦合意旨耦合的雜訊能透過基板而構成對其他電路的干擾。在本論文中,吾人首先討論如何加強對基板耦合的抑制能力與降低雜訊源。然後基於基板耦合特性分析,提出不同抑制結構如P型環護(P+ Guard Ring)與深層N型佈植層(Deep-N-Well)來防禦基板耦合,並且發展符合射頻電感器高品質因素與低雜訊源之要求的懸吊式電感器。 *作者 **指導教授
The Development of RF Inductor Based on the Study of the Substrate Coupling
Shuo-Mao Chen*, Yean-Kuen Fang**, Wen-Kuan Yeh**, Jason Lin**,
Ta-Hsun Yeh**

Department of Electrical Engineering
National Cheng Kung University
Tainan, Taiwan, ROC
Abstract
Silicon is recognized as a fascinating material to meet the demand of high integration, low cost, and mature technique in integrated circuits for wireless communication applications. And the on-chip RF inductors without externally bonding wires have played an important role in SOC (System On Chip) designs. However, for the RF device in silicon chip, the substrate coupling has become as a noticeable issue between analog and digital portions of a mixed signal IC chip. Therefore, the development of the high Q RF inductor based on the studies of the substrate coupling becomes the major target in this paper.
The substrate coupling means the coupling noise through substrate to cause interference with others. In this thesis, how to enhance the suppression of substrate coupling and decline noise source has been studied. Various suppression structures such as P+ guard ring and Deep-N-Well structures are proposed first to defense the substrate coupling after the characteristic analysis of the substrate coupling effectively. Then, a suspended inductor suitable for the demand of high Q RF inductor and low substrate coupling are developed. *The author **The advisor
Table of Contents

Chinese Abstract i
English Abstract ii
Table of Contents iii
Figure Captions v
Chapter 1 Introduction 1
Chapter 2 Theory Reviews 5
2-1 The Physical Inductor and Parasitics of the Spiral Inductor 5
2-1.1 Series Inductance 6
2-1.2 Series Resistance 7
2-1.3Coupling Capacitance 10
2-1.4Oxide Capacitance 11
2-1.5 Substrate Parasitics 11
2-2 The Quality of the Inductor 12
2-3 Loss Mechanisms of the Inductor 14
2-3.1 Metal Losses 14
2-3.2 Capacitive Losses 16
2-3.3 Substrate Losses 17
2-4 Mechanisms of the Substrate Coupling 18
Chapter 3 Substrate Coupling 21
3-1 Preparation for RF Measurement 21
3-1.1 S-Parameters 21
3-1.2 RF Measurement Equipment Setup 22
3-1.3 VNA Standard Calibration Technique and Verification 23
3-2 Substrate Coupling 24
3-2.1 Structure Design 24
3-2.2 Measured results and Discussion 25
3-3 Suppression of Substrate Coupling 27
3-3.1 Structure Design 27
3-3.2 Measured results and Discussion 28
Chapter 4 Suspended RF Inductors 32
4-1 Substrate Coupling from the Suspended RF Inductor 32
4-1.1 Structure Design and Simulation 33
4-1.2 Results and Discussion 34
4-2 Suspended RF Inductor 35
4-2.1 Structure Design and Process Description 36
4-2.2 De-embedding for RF Inductors 37
4-2.3 Measurement and Modeling 38
4-2.4 Results and Discussion 41
Chapter 5 Conclusion 44
Reference 46
Acknowledgement
References

[1] N. Camiller, J. Costa, D. Lovelace, and D. Ngo, “Silicon MOSFET’s, the microwave device technology for the 90s,”IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 545-548.
[2] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 1470-1481, Oct. 1998.
[3] K. B. Ashby, A. Koullias, W. C. Finley, J. J. Bastek, and S. Moinian,”High Q inductors for wireless applications in a complementary silicon Bipolar process,” IEEE J. Solid-State Circuits, vol. 31, pp/ 4-9, Jan.1996.
[4] M. Park, S. Lee, C. S. Kim, H. K. Yu, and K. S. Nam, “The detailed analysis of high CMOS-compatible microwave spiral inductors in silicon technology,” IEEE Trans. Electron Devices, vol. 45, pp. 1953-1959, Sept. 1998.
[5] Yue, C.P. and Wong, S.,”On-chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE Symposium on VLSI Circuits, pp.85-86, 1997
[6] J. Y.-C. Chang, A. A. Abidi, and M. Gaitan, “Large suspended inductor on silicon and their use in a 2-μm CMOS RF amplifier,” IEEE Electron Device Letter, vol. 14, pp. 246-248, May 1993.
[7] Tony Yeung, Alan Pun, Zhiheng Chen, Jack Lau, and Francois J.R. Clement, “Noise coupling in heavily and lightly doped substrate from planar spiral inductor,” IEEE International Symposium on Circuits and Systems, pp.1405-1408, 1997.
[8] C.Patrick Yuc, and S. Simon Wong, “A physical modeling of spiral inductors on silicon,” IEEE Transactions on Electron Devices, vol. 47, no. 3, pp.560-568, March 2000.
[9_Pozar, 1997]
[10] Alireza Zolfaghari, Andrew Chan, and Behzad Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 36, no. 4, April 2001
[11] Jan Craninckx, and Michiel S. J. Steyaert, “A 1.8-GHz Low-Phase-Noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, MAY 1997
[12] Razavi, “Design of analog CMOS integrated circuits”
[13] HP8510C manual
[14] Hanjin Cho, and Dorothea E. Bulk, “ A Three-Step Method for the De-Embedding of High-Frequency S-Parameter Measurements,” IEEE Transactions on Electron Devices, vol. 38. no. 6, JUNE 1991
[15] G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, New Your, John Wiley and Sons, 1990.
[16] R. B. Merrill, T. W. Lee, Hong You, R. Rasmussen, and L. A. Moberly, “Optimization of High Q Integrated Inductors for Multi-Level Metal CMOS,” IEEE IEDM, pp. 38.7.1-38.7.3, 1995
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔