跳到主要內容

臺灣博碩士論文加值系統

(54.92.164.9) 您好!臺灣時間:2022/01/23 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃惠雅
研究生(外文):Hui-Ya Huang
論文名稱:探討以五環素為主動層的有機薄膜電晶體在各種情形下的電洞移動率
論文名稱(外文):Confer the Hole Mobility of Pentacene-Based Organic Thin Film Transistors in Different Conditions
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:100
中文關鍵詞:有機薄膜電晶體五環素
外文關鍵詞:pentaceneorganic thin film transistors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
我們之所以會研究有機薄膜電晶體(OTFT)的主要原因是它的低溫製程、低成本、可使用塑膠基板做成質地輕或可撓曲的薄膜電晶體。但有機薄膜電晶體的移動率比目前常用的非晶矽薄膜電晶體小,所以本論文中主要探討有機薄膜電晶體在不同情形下的移動率。
我們以五環素(Pentacene)這種有機材料為主動層做成有機薄膜電晶體。整個元件主要分四層:閘極金屬層,閘極介電層,有機主動層及汲極、源極金屬層。這四層是分別使用四種不同的金屬光罩用蒸著的方式成長在玻璃基板上,並以X光繞射(XRD),原子力顯微鏡(AFM),HP 4155B等量測儀器來分析有機薄膜及整個元件的特性。並由這些特性我們可以計算出電洞移動率,並解釋在不同情形下電洞移動率變化的可能原因。
首先我製作兩種不同結構的有機薄膜電晶體:上電極結構(Top contact)及下電極結構(Bottom contact)。由實驗結果得出上電極結構的電洞移動率比下電極結構的還要高。電洞移動率在有機薄膜電晶體中是非常重要的參數,越高的電洞移動率特性越好。於是我針對上電極結構來改善電洞移動率。在有機薄膜電晶體中,有機主動層的分子排列情形對電洞移動率的影響很大。所以我使用不同有機主動層厚度及不同沈積速率來做成有機薄膜電晶體,並找出電洞移動率最大的厚度及最好的沈積速率。最後我使用回火的方式來增加有機薄膜電晶體的電洞移動率。
綜合上述所論,我們可以經由改善有機主動層的薄膜品質來增加電洞移動率,進而改善元件特性。
The driving force for us to research organic thin film transistors (OTFTs) is that they are low temperature fabrication, low cost, and can use plastic substrate to fabricate lightweight or flexible thin film transistor (TFT). Recently, the mobility of OTFTs is lower than amorphous Si TFT, which is usually used in commercial TFT. So in this thesis, we confer the mobility of OTFTs in different conditions.
We fabricate the pentacene-based organic thin film transistors (OTFTs). This device has four layers: gate electrode, gate dielectric layer, organic active layer, and drain/source electrodes. These four layers were deposited on glass substrates by evaporation through four different metal masks. And we used x-ray diffraction, atomic force microscope, and HP 4155 B equipment to analyze the properties of organic thin film and the performance of the device. From these properties we can calculated the hole mobility and explain the possible reasons that affect hole mobility.
First, two different structures organic thin film transistors were fabricated: Top contact and bottom contact structure. From the results of experiment, we can find the hole mobility in the top contact structure is higher than that of bottom contact structure organic thin film transistors. Hole mobility is a very important parameter in organic thin film transistors, the higher hole mobility the better performance of organic thin film transistors. So the hole mobility in top contact structure organic thin film transistors was further improved. In organic thin film transistors, the molecular arrangement of organic active layer is very important for hole mobility. So we fabricated the organic thin film transistors with different thickness and deposition rate of organic active layer to determine the optimum thickness and deposition rate. Finally, thermal annealing was employed to improve the hole mobility of organic thin film transistors.
To conclude, we can improve the properties of organic thin film to increase the hole mobility resulting in the better performance of organic thin film transistors.
Abstract (in Chinese) 3
Abstract (in English) 5
Contents 7
Table Captions 10
Figure Captions 11

Chapter 1 Introduction 13

Chapter 2 Materials used in Organic Thin Film Transistors (OTFTs)

2-1 Conjugated Materials Used in OTFTs 17
2-2 Properties of Pentacene 19

Chapter 3 Principles of Organic Thin Film Transistors (OTFTs)

3-1 Structure and Mode of Operation of OTFTs 22
3-2 Important Parameters of OTFTs 23
3-2-1 Mobility 24
3-2-2 Threshold Voltage 25
3-2-3 Subthreshold Slope 27
3-2-4 On/Off Current Ratio 28

Chapter 4 Experiment Procedure and Equipment

4-1 Experiment Procedure 30
4-1-1 Substrate Cleaning 30
4-1-2 Fabrication Procedure 30
4-2 Fabrication Equipment 32
4-3 Measurement Equipment 34
4-3-1 X-Ray Diffraction 35
4-3-2 Atomic Force Microscope 36

Chapter 5 Results and Discussion

5-1 Bottom Contact and Top Contact Structure 40
5-2 Different Thickness of Organic Layer 43
5-3 Control the Deposition Rate of Organic Layer 47
5-4 Annealing Effect of OTFTs 50

Chapter 6 Conclusion and Future Prospect

6-1 Conclusion 53
6-2 Future Prospect 54

Reference 56

Table 63

Figure 66
[1]Anurag Lodha and Student Member, ”Prospects of Manufacturing organic semiconductor-based integrated circuits,” IEEE Transactions on Semiconductor Manufacturing, vol.14, pp.281-296, 2001.
[2]Luisa Torsi, “Novel applications of organic based thin film transistors,” Microelectronics Reliability, vol. 40, pp. 779-782, 2000.
[3]L. Torsi, N. Cioffi, C. Di Franco, L. Sabbatini, P. G. Zambonin and T. Bleve-Zacheo, “Organic thin film transistors: from active materials to novel applications,” Solid-State Electronics, vol. 45, pp. 1479-1485, 2001.
[4]Francis Garnier, “Thin-film transistors based on organic conjugated semiconductors,” Chemical Physics, vol. 227, pp.253-262, 1998.
[5]Francis Garnier, Gilles Horowitz, Denis Fichou and Abderrahim Yassar, “Molecular order in organic-based field-effect transistors,” Synthetic Metals, vol. 81, pp.163-171, 1996.
[6]Hagen Klauk, Student Member, David J. Gundlach, Student Member, Jonathan A. Nichols and Thomas N. Jackson, Member, ”Pentacene organic thin-film transistors for circuit and display applications,” IEEE Transactions on Electron Devices, vol. 46, pp. 1258-1263, 1999.
[7]Yen-Yo Lin, Student Member, David J. Gundlach, Shelby F. Nelson and Thomas N. Jackson, Member, “Pentacene-based organic thin-film transistors,” IEEE Transactions on Electron Devices, vol. 44, pp.1325-1331, 1997.
[8]Y. Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, vol. 18, pp. 606-608, 1997.
[9] Hagen Klauk and Thomas N. Jackson, “Pentacene organic thin-film transistors and ICs,” Solid State Technology, pp 63-76, March 2000.
[10]R. B. Campbell, J. Monteath Robertson and J. Trotter, “The crystal and molecular structure of pentacene,” Acta Cryst., vol. 14, pp.705-711, 1961.
[11]Thomas N. Jackson, Member, Yen-Yi Lin, Student Member, David J. Gundlach, Student Member and Hagen Klauk, Student Member, “organic thin-film transistors for organic light-emitting flat-panel display backplanes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 4, pp. 100-104, 1998.
[12]J. Cornil, J. Ph. Calbert and J. L. Bredas, “Electronic structure of the pentacene single crystal: relation to transport properties,” J. Am. Chem. Soc., vol. 123, pp.1250-1251, 2001.
[13]John E. Anthony, James S. Brooks, David L. Eaton and, Sean R. Parkin, “Functionalized pentacene: improved electronic properties from control of solid-state order,” J. Am. Chem. Soc., vol. 123, pp. 9482-9483, 2001.
[14]Ioannis Kymissis, Student Member, C. D. Dimitrakopoulos and Sampath Purushothaman, “High-performance bottom electrode organic thin-film transistors,” IEEE Transactions on Electron Devices, vol. 48, pp. 1060-1064, 2001.
[15]P. V. Necliudov, M. S. Shur, D. J. Gundlach and T. N. Jackson, ”Modeling of organic thin film transistors of different designs,” Journal of Applied Physics, vol. 88, pp.6594-6597, 2000.
[16]C. D. Dimitrakopoulos, A. R. Brown and A. Pomp, “Molecular beam deposited thin film of pentacene for organic field effect transistor applications,” J. Appl. Phys., vol. 80, pp. 2501-2508, 1996.
[17]I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, “Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrate,” Synthetic Metals, vol. 104, pp. 175-178, 1999.
[18]Francis Garnier, Gilles Horowitz, Denis Fichou and Abderrahim Yassar, “Role of mesoscopic molecular organization in organic-based thin film transistors,” Supramolecular Science, vol. 4, pp. 155-162, 1997.
[19]J. H. Schon and B. Batlogg, “Trapping in organic field-effect transistors,” Journal of Applied Physics, vol. 89, pp. 336-342, 2001.
[20]J. H. Schon, “High mobilities in organic semiconductors: basic science and technology,” Synthetic Metals, vol. 122, pp.157-160, 2001.
[21]David J. Gundlach, Hagen Klauk, Chris D. Sheraw, Chung-Chen Kuo, Jiunn-Ru Huang and Thomas N. Jackson, “High-mobility, low voltage organic thin film transistors,” Electron Devices Meeting, IEDM Technical Digest, pp. 5.2.1-5.2.4, 1999.
[22] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters and D. M. de Leeuw, “Low-cost all-polymer integrated circuits,” Applied Physics Letters, vol. 73, pp. 108-110, 1998.
[23]G. Horowitz and M. E. Hajlaoui, “Grain size dependent mobility in polycrystalline organic field-effect transistors,” Synthetic Metals, vol. 122, pp. 185-189, 2001.
[24]G. H. Gelinck, T. C. T. Geuns and D. M. de Leeuw, “High-performance all-polymer integrated circuits,” Applied Physics Letters, vol. 77, pp. 1487-1489, 2000.
[25]Gilles Horowitz and Philippe Delannoy, “An analytical model for organic-based thin-film transistors,” Journal of Applied Physics, vol. 70, pp. 469-475, 1991.
[26]Chun-sung Chiang, Jerzy Kanicki and Kazushige Takechi, ”Electrical intensity of hydrogenated amorphous silicon thin-film transistors for active-matrix liquid-crystal displays,” Japanese Journal of applied Physics, vol.37, pp. 4704-4710, 1998.
[27]H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123-2126, 2000.
[28] D. J. Gundlach, T. N. Jackson, D. G. Schlom and S. F. Nelson, “Solvent-induced phase transition in thermally evaporated pentacene films,” Applied Physics Letters, vol. 74, pp. 3302-3304, 1999.
[29]S. F. Nelson, Y. Y. Lin, D. J. Gundlach and T. N. Jackson, ”Temperature-independent transport in high-mobility pentacene transistors,” Applied Physics Letters, vol. 72, pp. 1854-1856, 1998.
[30]Takashi Minakata, Hideaki Imai and Masaru Ozaki, “Structural studies on highly ordered and highly conductive thin films of pentacene,” Journal of Applied Physics, vol. 72, pp. 5220-5225, 1992.
[31]H. L. Kwok, “Analytical model for current transport in organic thin-film transistors,” IEE Proc.-Circuits Devices Syst., vol. 147, pp. 125-128, 2000.
[32]A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-effect transistors made from solution-processed organic semiconductors,” Synthetic Metals, vol. 88, pp. 37-55, 1997.
[33]D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson and D. G. Schlom, “Pentacene organic thin-film transistors-molecular ordering and mobility,” IEEE Electron Device Letters, vol. 18, pp. 87-89, 1997.
[34]J. H. Schon, Ch. Kloc and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, vol. 1, pp. 57-64, 2000.
[35]Ying-Chia Chen, Yew Chung Sermon Wu, I-Chung Tung, Chi-Wei Chao, Ming-Shiann Feng and Huang-Chung Chen, “Characterization of excimer-laser-annealed polycrystalline silicon films grown by ultrahigh-vacuum chemical vapor deposition,” Applied Physics Letters, vol. 77, pp. 2521-2523, 2000.
[36]Tadashi Serikawa and Fujio Omata, “High-mobility poly-Si TFT’s fabricated on flexible stainless-steel substrates,” IEEE Electron Device Letters, vol. 20, pp. 574-576, 1999.
[37]Jeong Hyun Kim, Eui Yeal Oh, Byung Chul Ahn, Donggil Kim and Jin Jang, “Performance improvement of amorphous silicon thin-film transistors with SiO2 gate insulator by N2 plasma treatment,” Applied Physics Letters, vol. 64, pp. 775-776, 1994.
[38]G. Horowitz, R. Hajlaoui, R. bourguiga and M. Hajlaoui, “Theory of the organic field-effect transistor,” Synthetic Metals, vol. 101, pp. 401-404, 1999.
[39]P. Mach, S. J. Rodrigguez, R. Nortrup, P. Wiltzius and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Applied Physics Letters, vol. 78, pp. 3592-3594, 2001.
[40]A. J. Salih, S. P. Lau, J. M. Marshall, J. M. Maud, W. R. Bowen, N. Hilal, R. W. Lovitt and P. M. Williams, “Improved thin films of pentacene via pulsed laser deposition at elevated substrate temperatures,” Applied Physics Letter, vol. 2231-2233, 1996.
[41]Zhenan Bao, Ananth Dodabalapur and Andrew J. Lovinger, “Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility,” Applied Physics Letters, vol. 69, pp. 4108-4110, 1996.
[42]H. Fuchigami, A. Tsumura and H. Koezuka, “Polythienylenevinylene thin-film transistor with high carrier mobility,” Applied Physics Letters, vol. 63, pp. 1372-1374, 1993.
[43]A. J. Salih, J. M. Marshall and J. M. Maud, “Mobility of oligomeric thin film transistors prepared at rapid growth rates by pulsed laser deposition,” Journal of Non-Crystalline Solids, vol. 227-230, pp. 1240-1244, 1998.
[44]Joyce G. Laquindanum, Howard E. Katz, Ananth Dodabalapur and Andrew J. Lovinger, “n-channel organic transistor materials based on naphthalene frameworks,” J. Am. Chem. Soc., vol. 118, pp. 11331-11332, 1996.
[45]Chung-Kun Song, Min-Kyung Jung and Bon-Won Koo, “Pentacene thin film transistor improved by thermal annealing,” Journal of the Korean Physical Society, vol. 39, pp. S271-S274, 2001.
[46]Jae-Hyuk Lee, Dae-Yop Kim, Jong Sun Choi, Jung-Su Kim, Dou-Yol Kang and Dong-Myung Shin, “Annealing effects on the electrical characteristics of pentacene thin film transistors,” Journal of the Korean Physical Society, vol. 38, pp. 282-285, 2001.
[47]C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner and S. R. Forrest, “Integration of organic LED’s and amorphous Si TFT’s onto flexible and lightweight metal foil substrates,” IEEE Electron Device Letters, vol. 18, pp. 609-612, 1997.
[48]Daniel B. Thomasson and Thomas N. Jackson, “High mobility tri-layer a-Si:H thin –film transistors with ultrathin active layer,” IEEE Electron Device Letters, vol. 18, pp. 397-399, 1997.
[49]Chun-sung Chiang, Chun-ying Chen, Jerzy Kanicki and Kazushige Takechi, “Investigation of intrinsic channel characteristics of hydrogenated amorphous silicon thin-film transistors by gated-four-probe structure,: Applied Physics Letters, vol. 72, pp. 2874-2876, 1998.
[50]M. G. Kane, J. Campi, M. S. Hammond, F. P. Cuomo, B. Greening, C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, L. Jia, H. Klauk and T. N. Jackson, “Analog and digital circuits using organic thin-film transistors on polyester substrates,” IEEE Electron Device Letters, vol. 21, pp. 534-536, 2000.
[51]Joyce G. Laquindanum, Howard E. Katz, Andrew J. Lovinger and Ananth Dodabapur, “Mophological origin of high mobility in pentacene thin-film transistors,” Chem. Mater., vol. 8, pp. 2542-2544, 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top