跳到主要內容

臺灣博碩士論文加值系統

(3.90.139.113) 您好!臺灣時間:2022/01/16 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石明昌
研究生(外文):Ming-Chang Shih
論文名稱:硒化鋅系列金半金光檢測器之製作與研究
論文名稱(外文):Fabrication and Study of the ZnSe-based Metal-Semiconductor-Metal (MSM) Photodetector
指導教授:蘇炎坤蘇炎坤引用關係藍文厚
指導教授(外文):Yan-Kuin SuWen-How Lan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:73
中文關鍵詞:硒化鋅金半金光檢測器
外文關鍵詞:ZnSeMSM photodetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們以分子束磊晶系統(MBE)在半絕緣的砷化鎵(GaAs)基板上成長一系列硒化鋅(ZnSe)為主的二六族化合物半導體材料,並利用光激發螢光頻譜(PL)與X-ray繞射量測來檢驗磊晶品質。接著我們以不同組成、不同厚度的片子來製作一系列的金半金光檢測器,其中並包含不同的指寬與指距的設計,而且進一步地比較其中差異對元件特性的影響。
以硒化鋅製作的光檢測器,因為與基板有0.27%的晶格不匹配,所以在接面處產生許多缺陷與差排,這直接影響到元件之光響應度。接著我們以硫硒化鋅(ZnSSe)來製作光檢測器,可是並沒有因較匹配的晶格常數而提高其光響應度。最後我們成功地在砷化鎵基板上成長了高品質的硫碲硒化鋅(ZnSTeSe),以其製作金半金光檢測器,在偏壓為3伏特且沒有抗反射層的情況下最高的光響應度是0.4A/W。
In this thesis, the II-VI ZnSe-based compound semiconductors were all grown on semi-insulated (SI) GaAs substrates by molecular beam epitaxy (MBE) method. The crystal quality of the sample was investigated by used of photoluminescence (PL) and X-ray diffraction analyzer. These fabricated ZnSe-based metal-semiconductor-metal (MSM) photodetectors were compared with different parameters, including composition ratio, finger width/spacing, and thickness of absorption layer.
We found that a lot of defects and dislocations produced at ZnSe/GaAs interface (0.27% lattice mismatch) were resulted in degradation of responsivity of the ZnSe MSM photodetector. Although ZnSSe epilayer with smaller lattice mismatch was also grown on GaAs substrates, the responsivity of fabricated ZnSSe MSM photodetector was not improved. Therefore, high-quality quaternary ZnSTeSe epitaxial layers were grown on GaAs substrate successfully, and the responsivity of the ZnSTeSe MSM photodetector was about 0.4 A/W under 3 V reverse bias without any antireflection coating.
Content

Abstract (Chinese)...............................I

Abstract (English)..............................II

Content.........................................IV

Figure Captions.................................VI

Chapter 1 Introduction...........................1

Chapter 2 Theory of the MSM Photodetector........5
2-1 Operation Principle..........................5
2-2 Geometry Consideration.......................7
2-3 Theoretical Analysis.........................8
2-3-1 Dark Current...............................8
2-3-2 Responsivity and Quantum Efficiency.......10

Chapter 3 Experimental Arrangement..............13
3-1 Crystal Growth of II-VI Compound............13
3-2 Devices Structure and Fabrication...........14
3-3 Measurement of MSM Photodetector............16
3-3-1 Spectral Response.........................16
3-3-2 Current-Voltage Measurement under Different
Irradiation...............................17
3-4 Analysis Tools..............................17
3-4-1 Photoluminescence (PL)....................17
3-4-2 X-Ray Diffraction (XRD)...................19
.
Chapter 4 Result and Discussion.................20
4-1 Problems of Responsivity Measureement.......20
4-2 ZnSe MSM Photodetectors.....................21
4-2-1 Dark Current..............................22
4-2-2 Influences of the Electrodes and Absorption
Profile of the MSM Photodetector..........22
4-2-3 Current-Voltage Behaviors under Different
Irradiation...............................24
4-3 ZnSSe MSM Photodetectors....................26
4-4 ZnSTeSe MSM Photodetectors..................27

Chapter 5 Conclusions...........................29

REFERENCEs......................................30
REFERENCES

[1]D. Melo, L. Hemandez, M. Melendez-Lira, Z.
Kivera-Alvarez, and I. Hernandez-Calderon,
“Influence of Cl doping in the optical and
electrical properties of ZnSe grown by
molecular beam epitaxy,” SBMO/IEEE MTT-SIMOC’
95.
[2]R. L. Gunshor, A. V. Nurmikko, and N. Otsuka,
“Blue lasers on the horizon,” IEEE Spectrum
1993.
[3]M. Razeghi and A. Rogalski, “Semiconductor
ultraviolet detectors, J. Appl. Phys., vol.
79, pp. 7433-7473, 1996.
[4]F. Vigue, E. Tournie, and J.P. Faurie,
“Evaluation of the Potential of ZnSe and Zn(Mg)
BeSe Compounds for Ultraviolet
Photodetection,” IEEE J. Quantum Electron.,
vol.37, pp. 1146-1152, 2001.
[5]Z. C. Huang, C. R. Wie, I. Na, H. Luo, D. B.
Mott, and P. K. Shu, ”High performance ZnSe
photoconductors,” Electron. Lett., vol. 32,
no. 16, pp. 1507-1508, 1996.
[6]A. Gerhard, J. Nurnberger, K. Schull, V. Hock,
C. Schumacher, M. Ehinger, and W. Faschinger,
“ZnSe-based MBE-grown photodiodes,” J. Cryst.
Growth, vol. 184/185, pp. 1319-1323, 1998.
[7]H. Hong, W. A. Anderson, J. Haetty, E. H. Lee,
H. C. Chang, M. H. Na, H. Luo, and A. Petrou,
“Nitrogen ion implanted ZnSe/GaAs p-i-n
photodetectors,” J. Appl. Phys., vol. 84, no.
4, pp. 2328-2333, 1998.
[8]W. Faschinger, M. Ehinger, T. Schallenberg,
and M. Korn, “High- efficiency p-i-n
detectors for the visible spectral range based
on ZnSTe-ZnTe supperlattices,” Appl. Phys.
Lett., vol. 74, no. 22, pp. 3404-3406, 1999.
[9]F. Vigue, E. Tournie, and J.P. Faurie, “ZnSe-
based Schottky barrier photodetectors,”
Electron. Lett., vol. 36, no. 4, pp. 352-354,
2000.
[10]F. Vigue, P. de Mierry, J. P. Faurie, E.
Monroy, F. Calle, and E. Mufnoz, “High
detectivity ZnSe-based Schottky barrier
photodetectors for the blue and near-
ultraviolet spectral range,” Electron.
Lett., vol. 36, no. 9, pp. 826-827, 2000.
[11]E. Monroy, F. Vigue, F. Calle, J. I. Izpura,
E. Monuz, and J. P. Faurie, “Time response
analysis of ZnSe-based Schottky barrier
photodetectors,” Appl. Phys. Lett., vol. 77,
no. 17, pp. 2761-2763, 2000.
[12]Z. C. Huang, J. C. Chen, and D. Wickenden,
“Characterization of GaN using thermally
stimulated current and photocurrent
spectroscopies and its application to UV
detectors,” J. Cryst. Growth, vol. 170, pp.
362-366, 1997.
[13]C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi,
J. Y. Chi, C.A. Chang, J. K. Sheu, and J. F.
Chen, “GaN metal-semiconductor-metal
ultraviolet photodetectors with transparent
indium-tin-oxide Schottky contacts,” IEEE
Photon. Technol. Lett., vol. 13, pp. 848-850,
2001.
[14]Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J.
Chang, and J. K. Sheu, “GaN and InGaN metal-
semiconductor-metal photodetectors with
different Schottjy contact metals,” J. J.
Appl. Phys., vol. 40, pp. 2996-2999, 2001.
[15]S. J. Chang, Y. K. Su, W. R. Chen, W. H. Lan,
W. J. Lin, Y. T. Cherng, C. H. Liu, and U. H.
Liaw, “ZnSTeSe metal-semiconductor-metal
photodetectors,” IEEE Photon. Tech. Lett.,
vol. 14, no. 2, 2002.
[16]Stephen Y. Chou, and Mark Y. Liu, “Nanoscale
tera-hertz metal-semiconductor-metal
photodetectors,” IEEE J. Quantum Electron.,
vol. 28, no. 10, 1992.
[17]Anthony W. Sarto and Bart J. Van Zeghbroeck,
“Photocurrents in a metal-semiconductor-metal
photodetector,” IEEE J. Quantum Electron.,
vol. 33, no. 12, 1997.
[18]Kevin F. Brennan, Joe Haralson H, Joseph W.
Parks Jr, and Ali Salem, “Review of
reliability issues of metal-semiconductor-
metal and avalanche photodiode photonic
detectors,” Microelectronics Reliability,
vol. 39, pp. 1873-1883, 1999.
[19]Ito M, and Wada O, “Low dark current GaAs
MSM photodiodes using W-Si contacts,” IEEE
J. Quantum. Electron., vol. 22, no. 7, pp.
1073-1077, 1986.
[20]Soole JBD, Schumacher H, “ InGaAs metal-
semiconductor-metal photodetectors for long
wavelength optical communications,” IEEE J.
Quantum. Electron., vol. 27, no. 3, pp. 737-
752, 1991.
[21]Soole JBD, Schumacher H, “Transit-time
limited frequency response of InGaAs MSM
photodetectors,” IEEE Trans. Electron.
Dev., vol. 37, no. 11, pp. 2285-2291, 1990.
[22]Sze SM. Physics of semiconductor devices, 2nd
ed., New York: Wiley; 1981.
[23]Singh J. Semiconductor devices. New York:
McGraw-Hill; 1994.
[24]Bhattacharya P. Semiconductor optoelectronic
devices, 2nd ed. New Jersey: Prentice Hall,
1997.
[25]S. V. Averine, Y. C. Chan, and Y. L. Lam,
“Geometry optimization of interdigitated
Schottky-barrier metal-semiconductor-metal
photo- diode structures,” S. S. E., vol. 45,
pp. 441-446, 2001.
[26]Burm J, Litvin KI, Schaff WJ, and Eastman LF,
“Optimization of high-speed metal-
semiconductor-metal photodetectors,” IEEE
Photon. Technol. Lett., vol. 6, no. 6, pp.
722-724, 1994.
[27]S. M. Sze, D. J. Coleman, Jr., and A. Loya,
“Current transport in metal-semiconductor-
metal (MSM) structures,” S. S. E., vol. 14,
pp. 1209-1218, 1971.
[28]Waclaw C. Koscielniak, Jean-luc Pelouard,
Robert M. Kolbas, and Michael A. Littlejohn,
“Dark current characteristics of GaAs metal-
semiconductor-metal (MSM) photodetectors,”
IEEE Trans. Electron. Dev., vol. 37, no. 7,
pp. 1623-1629, 1990.
[29]H. Hong and W. A. Anderson, “Cryogenic
processed metal- semiconductor-metal (MSM)
photodetectors on MBE grown ZnSe,” IEEE
Trans. Electron. Dev., vol. 46, pp. 1127-
1133, 1999.
[30]Jinwook Burn and Lester F. Eastman, “Low-
frequency gain in MSM photodiodes due to
charge accumulation and image force
lowering,” IEEE Photo. Tech. Lett., vol. 8,
no. 1, pp. 113-115, 1996.
[31]J. C. Carrano, T. Li, P. A. Grudowski, C. J.
Eiting, R. D. Dupuis, and J. C. Campbell,
“Comprehensive characterization of metal-
semiconductor-metal ultraviolet
photodetectors fabricated on single- crystal
GaN,” J. Appl. Phys., vol. 83, pp. 6148-6160.
[32]D. Walker, E. Monroy, P. Kung, J. Wu, M.
Hamilton, F. J. Sanchez, J. Diaz, and M.
Razeghi, “High speed low-noise metal-
semiconductor- metal ultraviolet
photodetectors based on GaN,” Appl. Phys.
Lett., vol. 74, pp. 762-764, 1999.
[33]I. K. Sou, Z. H. Ma, and G. K. L. Wong,
"Photoresponse studies of ZnSSe visible-blind
ultraviolet detectors: A comparison to ZnSTe
detectors,” Appl. Phys. Lett., vol. 75, no.
23, pp. 3707-3709, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top