跳到主要內容

臺灣博碩士論文加值系統

(35.153.100.128) 您好!臺灣時間:2022/01/19 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉長青
研究生(外文):Charng-Ching Yeh
論文名稱:透明導電膜氮化鈦在塑膠基板上之製作
論文名稱(外文):The Fabrication of the Transparent Conductive Films (TiN) on Plastic Substrates
指導教授:王永和王永和引用關係洪茂峰洪茂峰引用關係
指導教授(外文):Yeong-Her WangMau-Phon Houng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:73
中文關鍵詞:氮化鈦透明導電膜
外文關鍵詞:Titanium nitrideTransparent conductive film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:636
  • 評分評分:
  • 下載下載:135
  • 收藏至我的研究室書目清單書目收藏:1
透明導電膜氮化鈦在塑膠基板上之製作

葉長青* 洪茂峰** 王永和**
國立成功大學電機工程學系微電子所

摘要
於LCD技術中,透明導電膜一般均製作在玻璃上。但塑膠基版有量輕、形薄、及耐摔的優點,故為下一世代LCD之基板材料。
銦錫氧化物(ITO)和金是一般常用的透明導體。但是金的硬度不夠,ITO的抗腐蝕性不佳。氮化鈦是一種陶瓷材料,通常被使用作防腐蝕的表面塗層。它不但導電且當厚度屬於幾百埃時在可見光的範圍(380-780 nm)是呈現透明狀。我們將試著作出透明導電膜TIN。
本研究的目的即使用反應性射頻磁控濺渡法在塑膠基板上成長TIN薄膜。並探討鍍製功率及基板溫度對薄膜性質的影響。實驗中,我們使用原子力顯微鏡、化學分析電子光譜儀、歐傑電子光譜儀、四點探針儀及可見光光譜儀來分析薄膜的特性。最後在加熱基板及鍍製功率120w的條件下得到較低的電阻率: 3.55*10-3Ω•cm。在波長550 nm時,最高的穿透率81% 出現在鍍製功率60w的條件下。

* 作者
** 指導教授
關鍵詞:透明導電膜、氮化鈦
The Fabrication of the Transparent Conductive Films (TiN) on Plastic Substrates

Charng-Ching Yeh* Mau-Phon Houng** Yeong-Her Wang**
Institute of Microelectronics
Department of Electrical Engineering
National Cheng Kung University, Tainan 701, Taiwan, R.O.C.
Abstract
. For producing the LCD (Liquid Crystal Displays), the transparent conductive films are generally deposited on the glass. Because plastic substrates have the advantages of low cost, light-weighted, and rugged characteristics, people think it the materials of the next period for the substrate of LCD.
Indium tin oxide (ITO) and gold are commonly used as transparent conductors. However, gold does not have a high hardness and IT0 is not resistant to corrosion. Titanium nitride is a kind of ceramic which is used as a protective coating for corrosion and wear. It is conductive and transparency can be obtained in films with a thickness of some tens of nm, As the wavelength of visible light is 380-780 nm. We tried to form such very thin TiN films to obtain a transparent and conductive nitride coating.
The objectives of this research are to deposit TiN films on the plastic substrates by reactive RF sputtering. In addition, the effects of sputtering power and substrate temperature on the characteristics of the sputtered thin films are also investigates. In the experience, the properties of the TiN films are analyzed from AFM, XPS, AES, Four-Point-Probe, and Spectrophotometer. We get TiN films of electrical resistivity as low as 3.55*10-3Ω•cm by heating substrate with RF power 120w. When the wavelength is 550 nm, the highest transmittance is 81% by heating substrate with RF power 60w.

* The author
** The advisor
Key Words: Transparent conductive film, Titanium nitride (TiN)
Abstract 4
Contents 6
List of Figures 7
List of Tables 8
Contents
Chapter 1 Introduction 9
1.1 General Introduction 9
1.2 Motivation 12
1.3 Ooutline of the Thesis 13
Chapter 2 Background Theory 15
2.1 Sputtering System Techniques 15
2.1.1 Principle of Sputtering 15
2.1.2 Glow Discharge DC Sputtering 16
2.1.3 High Rate Sputtering Insulators 17
2.1.4 Reactive Sputter Deposition 19
2.2 Characterization of the Plastic Substrates 19
2.2.1 Introduction 19
2.2.2 Thermal Stability of Plastic Substrates 21
2.2.3 Chemical Resistance of Plastic Substrates 23
2.2.4 Surface Roughness Conditions of Plastic Substrates 23
2.3 Characterization of Thin Film Deposition 24
2.4 Fundamental Characteristics of TiN Films 25
Chapter 3 Experiments and Results 27
3.1 Preparation and Process Concepts 27
3.1.1 Pre-Processing Cleaning 27
3.1.2 Sputtering System and Process Concepts 27
3.2 Characterization of Films 28
3.3 Deposition of Titanium Nitride 31
Chapter 4 TiN Characteristics and Morphology 34
4.1 Physical and Chemical Properties 34
4.1.1 Surface Morphology 34
4.1.2 XPS Surface Analysis of Ti 2p spectra 35
4.1.3 AES Surface Analysis of N/Ti Ratio 36
4.1.4 AES Depth Profile 37
4.2 Electrical Properties and Transmittance of Thin Films 37
4.2.1 Electrical Resistivity of Thin Films 37
4.2.2 Transmittance of Thin Films 38
Chapter 5 Conclusions and Future Work 39
5.1 Conclusions 39
5.2 Future Works 40
References 41
List of Figures
Fig. 1.1 Outline of this thesis 45
Fig. 2.1 (a) The sputtering process(Chapman 1980, p 178)
(b) A simple DC sputtering system(Chapman 1980, p 178) 46
Fig. 2.2 The sputtering yield of argon ions on copper ( Carter & Colligon 1968, p 182 ) 47
Fig. 2.3 The influence of a magnetic field on electron motion ( Chapman 1980, p 263 ) 48
Fig. 2.4 Roughness observations using AFM over 5*5 um2 scans on ARTON 49
Fig. 2.5 Roughness observations using AFM over 5*5 um2 scans on PET 49
Fig. 2.6 The flow of the nuclei growth 50
Fig. 2.7 models of crystallizing 51
Fig. 3.1 Sketch of the sputter setup used for multilayer sputtering system 57
Fig. 3.2 The experimental process flows 58
Fig. 3.3 The schematic diagram of four probe electrode 59
Fig. 3.4 Correction factor for the measurement of resistivity using four-point probe 59
Fig. 3.5 The diagram of TiN thickness vs. deposition time under different RF power 60
Fig. 4.1(a)The roughness of TiN films with RF power 60w (b) The roughness of TiN films with RF power 80w 61
Fig. 4.1 (c) The roughness of TiN films with RF power 100w (d) The roughness of TiN films with RF power 120w 62
Fig. 4.2 The Ti2p3/2 spectra of a typical TiN film at different substrate heating temperature 63
Fig. 4.3 (a) Auger spectrum in the differential distribution for a TiN film with RF power 60w 64
Fig. 4.3 (b) Auger spectrum in the differential distribution for a TiN film with RF power 80w 64
Fig. 4.3 (c) Auger spectrum in the differential distribution for a TiN film with RF power 100w 65
F Fig. 4.3 (d) Auger spectrum in the differential distribution for a TiN film with RF power 120w 65
Fig. 4.4 Dependence of N/Ti atomic ratio on RF power 66
Fig. 4.5(a) Auger depth profiles of Reactive Ion Sputtered TiN film on the ARTON 67
Fig. 4.5(b) Auger depth profiles of Reactive Ion Sputtered TiN film on the PET 67
Fig. 4.5(c) Auger depth profiles of Reactive Ion Sputtered TiN film on the Si 68
Fig. 4.5(a) Auger depth profiles of Reactive Ion Sputtered TiN film on the SiO2/Si 68
Fig. 4.6 The diagram of resistivity vs. thickness 69
Fig. 4.7 (a) The transmittance of the TiN Films deposited with RF power 60w 70
Fig. 4.7 (b) The transmittance of the TiN Films deposited with RF power 80w 70
Fig. 4.7 (c) The transmittance of the TiN Films deposited with RF power 100w 71
Fig. 4.7 (d) The transmittance of the TiN Films deposited with RF power 120w 71
Fig. 4.8 The diagram of transmittance vs. thickness 72
List of Tables
Table 2.1 Typical properties of polymers 52
Table 2.2 Results of the thermal stability test of the plastic substrates 53
Table 2.3 Chemical resistance of plastic substrates 54
Table 2.4 Physical Properties of Titanium Nitride (TiN) Coatings 55
Table 2.5 Some important comparisons of various TiN films 56
Table 4.1 The properties of TiN films deposited with differert RF power 73
[1] 李玉華‘ 透明導電膜及其應用 ’,科儀新知 第十二卷第一期 1990. p94-102.
[2] 許國銓 ‘ 科技玻璃-高性能透明導電玻璃 ’, 材料與社會. 84期 p110-119
[3] H. Koh, K. Sawada, M. Ohgawara, T. Kuwata, M. Akatsnka and M. Matsuhiro: SID Dig. Tech.Pap.19, 1988
[4] J. L. Vossen, Phys. Thin Films 9, 1 (1977).
[5] G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977).
[6] A. Dobrowolski, ‘ E C. Ho; D. Menagh, R. Simpson, and A. Waldorf, Appl. Opt. 26, 5204 (1987).
[7] M. Kiuchi and A. Chayahara Appt. Phys. Let, Vol. 64, No. 8, 21 February 1994
[8] Klaus K. Schuegraf, ‘ Handbook of Thin-Film Deposition Process and Techniques ’, Noyes Publication 2nd ed., pp. 291, (1988)
[9] Penning, F. M, Physica, pp. 873, (1936)
[10] Penfold, A.S. and Thornton, J.A., Patents 3,884,793, (1975), 3,995,187; 4,03,996; 4,031,424 and 4,041,353; (1977)
[11] P. G. Carey, P. M. Smith, M. O. Thompson, and T. W. Sigmon, ‘ Polysilicon Thin Films Transistors Fabricated at 100℃ on a Flexible Plastic Substrate ’, Conf. Record 1997 IDRC, p.58, 1997
[12] N. D. Young, D. J. McCulloch and R. M. Bunn, ‘ Displays and Microelectronics on Polymer Substrates ’, AMLCD97, p.47, 1997
[13] A. Stein, A. Liss, S. Fields, ‘ High-Temperature Acrylic Plastic Substrates: Thermal, Chemical, and Mechanical Properties ’, SID97 Digest, p.817, 1997
[14] E. Lueder, ‘ Trends of Research in Active Addressing of LCDs ’, Mat. Res. Soc. Symp. Proc., vol. 377, p.847, 1995
[15] S. Cucurachi, A. Rizzo, F. Sarto, S. Scaglione, ‘ Optical Behavior and Stability of Ion Assistance Deposited Antireflection Coating on Polymeric Substrates ’, Mat. Res. Soc. Symp. Proc., vol. 327, p. 1529-1532, 1996.
[16] G. A. Stackand S. F. Sartarm, ‘ Thermal Expansion of Some Diamondlike Crystal ’,p. 89-98, Jan. 1975.
[17] S. D. Thesis, P. G. Carey, P. M. Smith, P. Wickboldt and T. W. Sigmon, ‘ PolySilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate ’.
[18] Daniel B. Thomasson, Mathias Bonse, Jiunn-Ru Huang, Christopher R. Wronski and Thomas N. Jackson, ‘ Tri-layer a-Si:H Integrated Circuits on Polymeric Substrate ’.
[19] L. Eckertova and T. Ruzucka, ‘ Diagnostics and Applications of Thin Films ’, CH.1ž, Institute of Physics Publishing.
[20] M. Volmer and A. Weber, Z. Physik. Chem. 119, 277 (1926).
[21] F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc. London A198, 216 (1949).
[22] I. N. Stranski and L. Krastanow, Sitz. Ber. Akad. Wiss., Math.-naturwiss. Kl. Abt. IIb 146, 797 (1938).
[23] C. Y. Ting and M. Wittmer, ‘ The Use Titanium-Based Barrier Layers in Silicon Technology ’, Thin Solid Films, 96, 327 (1982)
[24] W.D. Sproul, J. Vac. Sci. Technol. A 4 6 (1986) 2874.
[25] J. Vetter, R. Rochotzki, Thin Solid Films 192 (1990) 253.
[26] S. Kanamori, Thin Solid Films 136 (1986) 195.
[27] M. Ostring, S. Nygren, C.S. Petersson et al., Thin Solid Films .145 (1986) 81.
[28] K. Hinode, Y. Homma, M. Horiuchi, T. Takahashi, J. Vac. Sci. Technol. A 15 4 (1997) 2017.
[29] P.J. Martin, R.P. Netterfield, W.G. Sainty, Vacuum 32 (1982) 359.
[30] B. Karlsson, R.P. Shimshock, B.O. Serphin, Phys. Scr. 25 (1982) 775.
[31] B. Karlsson, C.G. Ribbing, SPIE 324 (1982) 52.
[32] C.G. Ribbing, A. Roos, SPIE 3133 (1997) 148.
[33] P. Panjan, A. Zabkar, B. Navinsek et al., Vacuum 40 (1990) 161.
[34] Nguyen Huy Hoang, D. R. McKenzie, W. D. McFall, and Y. Yin, ‘ Properties of TiN films deposited at low temperature in a new plasma-based deposition system ’, J. Appl. Phys. 80 (11), 1 December 1996, p6279-6285
[35] 積體電路製程及設備技術手冊, CH9, p.247.
[36] Tzong-Sheng Chang, Wen-Chun Wang, and Fon-Shan Huang, ‘ The Study of Diffusion barrier TiNin Cu/TiN/TiSi2/Si Contact System ’, VLSI Technology, Systems, and Applications, 1995. Proceedings of Technical Papers. 1995 International Symposium on, 1995 , Page(s): 185 -189
[37] L.J. van der Pauw, Phillips Res. Repts. 13, 1 (1958).
[38] S. M. Sze, ‘ SEMICONDUCTOR DEVICE Physics and Technology ’, Wiley, Ch2, p.37.
[39] B. N. Chapman, ‘ Glow Discharge Processes:Sputtering & Plasma Etching ’, John Wiley & Sons 2nd ed., New York, (1980).
[40] N. Savvides and B. Window, J. Appl. Phys. 64, 225 ~1988.
[41] P. B. Legrand, J. P. Dauchot, M. Hecq, M. Charbonnier, and M. Romand, J. Vac. Sci. Technol. A 12, 1551 ~1994.
[42] Mikhalchuk, P.V.; Orlikovsky, A.A.; Vasiliev, A.G.; Lebedev, O.I.; Zakharov, “D.N, ‘ Deposition of thin TiN films by low-power reactive magnetron sputtering ’, Materials for Advanced Metallization, 1997. MAM '97 Abstracts Booklet., European Workshop , 1997 , Page(s): 143 -145.
[43] Movchan B.A., Demchishin A.V. Investigations of the structure and properties of thick Ni, Ti, W, Al2O3 and ZrO2 vacuum condensates. Fizika Metalov i Metalovedenije, 28, No.4, 1969.
[44] Bunshah R.F., Sans C., Movchan B.A., Demchishin A.V., Badilenko G.F. Structure / properties relationships in microlaminated TiC / Ni condensates. Thin Solid Films, vol.96, 1982.
[45] 李正中, 薄膜光學與鍍膜技術, Ch11, p.288
[46] J. Laimer, P. Braun, H. Stori, F. P.Viehbock, P. Rodhammer, and K. Kailer, Microchim. Acta Suppl. 10, 177 (1983).
[47] P. T. Dawson and K. K. Tzatzov, Surf. Sci 149, 105 (1985).
[48] A. J. Perry, C. Strandberg, W. D. Sproul, S. Hofmann, C. Ernsberger et al. Thin Solid Films 153, 169 (1987).
[49] J. Laimer. H. Stori, and P. Rodhammer, J. Vac. Sci. Technol., A7, 5, 2952, (1989).
[50] G.B. Smith, A. Ben-David, P.D. Swift, ‘ A new type of TiN coating combining broad band visible transparency and solar control ’, Renewable Energy 22 (2001) p.79-84.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top