|
References
[1]H. Kroemer, “Heterojunction Bipolar Transistor: What Should We Build? ” J. Vac. Sci. Technol., vol. B1, pp.126-130, 1983. [2]S. S. Lu and C. C. Wu, “High-Current-Gain, Small-Offset-Voltage In0.49Ga0.51P/GaAs Tunneling Emitter Bipolar Transistors Grown by Gas-Source Molecular Beam Epitaxy.” IEEE Electron Device Lett., vol.13, pp.468-470, 1992. [3]H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits.” IEEE Proc., vol.70, pp.13-25, 1982. [4]H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design.” Appl. Phys. Lett. vol.47, pp.839-841, 1985. [5]W. C. Liu and W. S. Lour, “An Improved Heterostructure-Emitter Bipolar Transistor (HEBT),” IEEE. Electron Device Lett., vol.12, No.9, pp.474-476,1991. [6]W. C. Liu, S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu, “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, pp. 1155-1161, 1999. [7]K. B. Thei, J. H. Tsai, W. C. Liu, and W. S. Lour, “Characteristics of functional heterostructure-emitter bipolar transistor (HEBT‘s),” Solid-St. Electron., vol. 39, pp. 1137-1142, 1996. [8]Wen-Shiung Lour, Wen-Chau Liu, Der-Feng Guo, and Rong-Chau Liu, “Modeling the DC performance of hetrostructure-emitter bipolar transistor,” Jpn. J. Appl. phys., vol. 31, pp. 2388-2393, 1992. [9]Der-Feng Guo, Wen-Chen Yeou, Wen-Shiung Lour, Wei-Chou Hsu, and Wen-Chau Liu, “Regenerative switching phenomenon of a GaAs metal-n-d(p+)-n-n+ structure,” Jpn. J. Appl. Phys., vol. 32, pp. L1011-L1013, 1993. [10]Wen-Chau Liu, Jung-Hui Tsai, Lih-Wen Laih, Cheng-Zu Wu, Kong-Beng Thei, Wen-Shiung Lour, and Der-Feng Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995. [11]W. Shockley, U. S. Patent No. 2 569 347 (Filed June 26, 1948, Issued September 25, 1951). [12]H. Kroemer, “Theory of a wide-gap emitter for transistors.” Proc. IRE 45, 1535, 1957. [13]W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electron. 15, 12, 1972. [14]V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures, Prentice Hall, Upper Saddle River, N.J., 1991. [15]R. N. Nottenburg, Y. K. Chen, M. B. Panish, D. A. Humphery, and R. Hamm, “Hot-electron InGaAs/InP heterostructure bipolar transistors with ft of 110GHz,” IEEE Electron Devices Lett. 10, 1 1989. [16]B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995. [17]W. M. Webster, “On the variation of junction-transistor current amplification factor with emitter current,” Proc. IRE, vol. 54, pp. 914-920, 1954. [18]Y. S. Hiraoka, J. Yoshida, and M. Azuma, “Two-dimensional analysis of emitter-size effect on current gain for AlGaAs/GaAs HBT’s,” IEEE Trans. Electron Device,vol. ED-34, pp. 721-725, 1987. [19]J. I. Song, K. B. Chough, C. J. Palmstrom, B. P. Van der Gaag, and W. P. Hong, “Carbon-doped base InP/InGaAs HBTs with fT = 200GHz, ” Abstr. IEEE Device Research Conf., 1994, paper IVB-5. [20]H. F. Chau and Y. C. Kao, “High fmax InAlAs/InGaAs heterojunction bipolar transistors, ” Tech. Dig. IEEE IEDM, 1993, pp.783-786. [21]T. Oka, T. Tanoue, H. Masuda, K. Ouchi, and T. Mozume, “InP/InGaAs heterojunction bipolar transistor with extremely high fT over 200GHz,” Electron. Lett., 31, 2044-2045, 1995. [22]S. Yamahata, K. Kurishima, H. Ito, and Y. Matsuoka, “Over-220GHz- fT and – fmax InP/InGaAs double-heterojunction bipolar transistors with a new hexagonal-shaped emitter,” Tech. Dig. IEEE GaAs IC Symp., 1995, pp. 163-166. [23]K. Kurishima, H. Nakajima, S. Yamahata, T. Kobayashi, and Y. Matsuoka, “Growth, design and performance of InP-based heterostructure bipolar transistors,” IEICE Trans. Electron., E78-C, 1171-1181 ,1995. [24]S. Yamahata, K. Kurishima, H. Nakajima, and T. Kobayashi, and Y. Matsuoka, “Ultra-high fmax and fT InP/InGaAs double-heterojunction bipolar transistors with step-graded InGaAsP collector,” Tech. Dig. IEEE GaAs IC Symp., 1994, pp. 345-348. [25]W. C. Liu, D. F. Guo, and W. S. Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double heterostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, pp. 1441-1443, 1992. [26]Jung-Hui Tsai, Lih-Wen Laih, Hui-Jung Shih, Wen-Chau Liu, and Hao-Hsiung Lin, “On the recombination currents effect of heterostructure-emitter bipolar transistors (HEBT’s),” Solid-St. Electron., vol. 39, pp. 1723-1730, 1996. [27]Shiou-Ying Cheng, Hsi-Jen Pan, Yung-Hsin Shie, Jing-Yuh Chen, Wen-Lung Chang, Wei-Chou Wang, Po-Hung Lin, and Wen-Chau Liu, “Influence of d-doping sheet and setback layer on the performance of InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 13, pp. 1187-1192, 1998. [28]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp.630-633, 1998. [29]W. C. Liu and W. S. Lour, “Negative-differential-resistance (NDR) superlattice-emitter transistor,” Jpn. J. Appl. Phys., vol. 30, pp. L564-L567, 1991. [30]W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE J. Solid-St. Circuits, vol. 27, pp. 2214- 2219, 1992. [31]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp.630-633, 1998. [32]Wen-Chau Liu, Shiou-Ying Cheng, Wen-Lung Chang, Hsi-Jen Pan, and Yung-Hsin Shie, “Application of d-doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998. [33]Der-Feng Guo, Shiuh-Ren Yih, Jing-Tong Liang and Wen-Chau Liu, “Characteristics of a GaAs Metal-n+-n-d(p+)-n-n+ Switch,” Solid-St. Electron., vol. 37, pp. 223-229, 1994. [34]J. C. Campbell, A. G. Dentai, C. A. Burrus, Jr., and J. F. Ferguson, “InP /InGaAs heterojunction phototransistors,” IEEE J. Quantum Electron. QE-17, 264, 1981. [35]K. Tabatabaie-Alavi, R.J. Markunas and C.G. Fonstad, “LPE-grown InGaAsP/InP heterojunction bipolar transistors,” in Tech. Dig. IEEE IEDM 643, 1979. [36]M. Tobe, Y.Amemiya, S. Sakai and M. Umeno, “High-sensitivity InGaAsP/InP phototransistors,” Appl. Phys. Lett. 37, 73 1980. [37]H. Kanbe, J.C. Vlcek and C.G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liqued phase wpitaxy with high dc current gain,” IEEE Electron Device Lett. EDL-5, 5 1984 [38]J. Xu and M. Shur, “A tunneling emitter bipolar transistor”, IEEE Electron Device Lett., vol. 7, pp. 416-418, July 1986. [39]Levi, A. F. J., Nottenburg, R. N. Chen. Y. K., and Cunningham, J. E., “AlAs/GaAs tunnel emitter bipolar transistor”, Appl. Phys. Lett., 1989, 54, pp. 2250-2252. [40]Najjar, F. E., Rasulescu, D. C., Chen, Y. K., Wicks, G. W., Tasker, P. J., and Easman, L. F., “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar tranistor”, Appl. Phys Lett.,1987, 50, pp. 1915-1917. [41]J. R. Hayes, A. C. Gossard, and W. Wiegann, Electron. Lett. 20 (1984) 766. [42]L. M. Su, N. Grote, R. Kaumanns, and H. Schroeter, Appl. Phys. Lett. 47 (1985) 28. [43]R. N. Nottenburg, H. Temkin, M. B. Panish, R. Bhat, J. C. Bischoff, IEEE Electron Device Lett. 7 (1986) 643. [44]A. W. Hanson, S. A. Stockman, and G. E. Stillman, IEEE Electron Device Lett. 14 (1993) 25. [45]J. C. Vlcek, C. G. Fonstad, Electron. Lett. 27 (1991) 1213. [46]M. Ohkubo, A. Iketani, T. Ljichi, and T. Kikuta, “InGaAs/InP double-heterojunction bipolar transistors with step graded InGaAsP between InGaAs base and InP collector grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp.2697-2699, 1991. [47]B. Willen and H. Asonen, “High-gain, high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995. [48]J. Hu, H. F. Chau, D. Pavlidis, K. Tomizawa, and P. Marsh, “Control of InP/InGaAs heterojunction bipolar transistor performance through the use of undoped collectors,” in Proc IEEE/Cornell Conf. On Advance Concepts in High Speed Semiconductor Devices and Circuits, Aug. 1991, pp. 104-113. [49]R. J. Malik, A. Feygenson, D. Ritter, R. A. Hamm, M. B. Panish, J. Nagle, K. Alavi, and A.Y. Cho, “Temperature Dependence of Collector Breakdown Voltage and Output Conductance in HBT’s with AlGaAs, GaAs, InP, and InGaAs Collectors,” IEEE IEDM pp. 805-808, 1991. [50]H. F. Chau, D. P. Pavlidis, J. Hu, and K. Tomizawa, “Breakdown-Speed Considerations in InP/InGaAs single- and Double- Heterostructure Bipolar Transistors,” IEEE, Transactions on Electron Devices, vol. 40, No. 1, January 1993. [51]J. R. Hayes, A. F. J. Levi, A. C. Gossard, and J. H. English, “Base transport dynamics in a heterojunction bipolar transistors, ” Appl.Phys.Lett, vol. 49, No. 21, November 1986. [52]W. Liu and J. S. Harris, Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors, ” IEEE Trans. Electron Devices, vol. 39, pp.2726-2732, 1992. [53]M.S. Gupta. “Power gain in feedback amplifiers,” IEEE Trans. on Microw. Theory and Tech. 40, (5), 864-79 (1992). [54]M. T. Fresina, “High-Frequency Indium Phosphide/ Indium Gallium Arsenide Heterojunction Bipolar Transistors M.S. thesis,” University of Illinois at Urbana-Champaign, 1992. [55]William Liu, handbook of III-V heterojunction bipolar transistors, Wiley, New York. [56]K. Eda, M. Inada, Y. Ota, A. Nakagawa, T. Hirose, and M. Yanagihara, “Emitter-Base-Collector Self-Aligned Heterojunction Bipolar Transistors Using Wet Etching Process,” IEEE Electron Devices Lett., vol. 7, no.12, pp.694-696, 1986. [57]W. U. Liu, D. Costa, and J. Harris, “Novel Doubly Self-Aligned AlGaAs/GaAs HBT,” Electronics Letters., vol. 26, no.17, pp.1361-1362, 1990. [58]W. Lee, S. Ueda, D., MA, T., Pao, Y. C., and Harris, J. S., “Effect of emitter-base spacing on the current of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 10, pp.200-202, 1989. [59]J. Xu and M. Shur, “A tunneling emitter bipolar transistor,” IEEE Electron Device Lett., vol. 7, pp. 416-418, 1986. [60]F. E. Najjar, D. C. Radulescu, Y. K. Chen, G. W. Wicks, P. J. Tasker, and L. F. Eastman, “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar transistor,” Appl. Phys. Lett., vol. 50, pp.1915-1917, 1987. [61]A. F. J. Levi, R. N. Nottenburg, and Y. K. Chen, “AlAs/GaAstunnel emitter bipolar transistor,” Appl. Phys. Lett., vol. 54, pp.2250-2252, 1989. [62]E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “Reduction of the surface recombination current in InGaAs/InP pseudo-heterojunction bipolar transistors using a thin InP passivation layer,” IEEE Electron Device Lett., vol. 10, pp. 585-587, 1989. [63]E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “GaInAs/InP pseudo-heterojunction bipolar transistors grown by MOVPE,” IEE Electron. Lett., vol. 25, pp.1539-1540, 1989. [64]S. S. Lu and C. C. Wu, “High-current-gain small-offset-voltage In0.49Ga0.51P/GaAs tunneling emitter bipolar transistors grown by gas source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 468-470, 1992. [65]S. S. Lu, C. C. Wu, and C. C. Huang, “DC characterization of the Ga0.51In0.49P/GaAs tunneling emitter bipolar transistor,” Appl. Phys. Lett., vol. 60, pp. 2138-2140, 1992. [66]H. R. Chen, C. P. Lee, C. Y. Chang, K. L. Tsai, and J. S. Tsang, “Current gains of AlAs/GaAs tunneling emitter bipolar transistors with 25-500Åbarrier thickness,” IEE Electron. Lett., vol. 29, pp.1883-1884, 1993. [67]N. Valsaraj, R. Sabbah, W. Jones, and K. Ikossi-Anastasiou, “Performance of InAlGaAs/InGaAs HBTs with tunneling AlAs barrier layer,” Proc. IEEE/Cornell Conf. on High Speed Semicond. Devices and Circuits, pp. 154-163, 1997. [68]P. Zwicknagl, U. Schaper, L. Schleicher, H. Siwerris, K. H. Bachem, T. Lauterbach, and W. Pletschen, “ High speed non-selfaligned GaInP/GaAs-TEBT,” IEE Electron. Lett., vol. 28, pp.327-329, 1992. [69]M. Ohkubo, A. Iketani, T. Ljichi, and T. Kikuta, “InGaAs/InP double-heterojunction bipolar transistors with step graded InGaAsP between InGaAs base and InP collector grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp.2697-2699, 1991. [70]B. Willen and H. Asonen, “High-gain, high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995. [71]S. C. Lee and H. H. Lin, “Transport theory of the double heterojunction bipolar transistor based on current balancing concept,” J. Appl. Phys., vol. 59, pp. 1688-1695, 1986. [72]C. C. Wu and S. S. Lu, “Small offset-voltage InGaP/GaAs double-barrier bipolar transistor,” IEEE Electron Device Lett., vol. 16, pp. 418-420, 1992. [73]D. Caffin, A.-M. Duchenois, F. Heliot, C. Besombes, Jean-Louis Benchimol, and P. Launay “Base-Collector Leakage Currents in InP/InGaAs Double Heterojunction Bipolar Transistors,” IEEE Transactions on Electron Devicest., vol. 44, no.6, pp. 930-936, 1997. [74]K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1319-1326, 1994. [75]J. F. Jensen, W. E. Stanchina, R. A. Metzger, D. B. Rensch, R. J. Ferro, P. F. Lou, M. W. Pierce, T. V. Kargodorian, and Y. K. Allen, “Improved AlInAs/GaInAs HBTs for high speed circuits,” SPIE, vol.1288, pp. 57-68, 1990. [76]A. Marty, G. Rey, and J. P. Bailbe, “Electrical behavior of an npn GaAlAs/GaAs heterojunction transistor,” Solid-State Electron , vol. 22, pp. 549-557, 1979. [77]Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994. [78]B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995. [79]J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, “Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs ans GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 73, pp. 2799-2801, 1998. [80]M. Peter, N. Herres, F. Fuchs, K. Winkler, K.-H. Bachem, and J. Wagner, “Band gaps and band offsets in strained GaAs1-ySby on InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 410-412, 1999. [81]C. R. Bolognesi, N. Matine, Martin W. Dvorak, P. Yeo, X. G. Xu, and Simon P. Watkins “InP/GaAsSb/InP Double HBTs: A New Alternative for InP-Based DHBTs,” IEEE Transaction on Electron Devices., vol. 48, no.11, pp.2631-2638, 2001. [82]M. Agethen, S. Schuller, P. Velling, W. Brockerhoff, F.-J. Tegude, “Cryogenic Temperature Dependence and Modelling of RF-noise Parameters of Carbon Doped InP/InGaAs HBT,” International Conference on Indium Phosphide and Related Materials Conference Proceedings, 13th IPRM ,2001. [83]C. Ito, S. Yamahata, and K. Kurishima, “Evaluation of base transit time in ultra-thin carbon doped base InP/InGaAs heterojunction bipolar transistors” IEEE Electronics lett., vol. 32, pp.1413-1415, 1990. [84]C. Ito, S. Yamahata, N. Shigekawa, K. Kurishima, and Y. Matsuoka, “High-speed carbon-doped-base InP/InGaAs heterojunction bipolar transistors grown by MOCVD ”, IEE Electronics Lett., vol. 31, pp.2128-2130, 1995. [85]W. Hanson, S. A. Stockman, and G. E. Stillman, “Comparison of InGaP/GaAs single and double-heterojunction bipolar transistors with a carbon-doped base”, IEEE Electron Device Lett., vol. 14, No.1, pp.25-28, 1993. [86]W. Hanson, S. A. Stockman, and G. E. Stillman, “InP/InGaAs heterojunction bipolar transistors with a carbon-doped base grown by MOCVD”, IEEE Electron Device Lett., vol. 13, No.10, pp.504-506, 1992. [87]W. P. Hong, J. I. Song, C. J. Palmstrom, B. V. D. Gaag, K. B. Chough, and J. R. Hayes, “DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors ”, IEEE Trans. Electron Devices., vol. 41, No.1, pp.19-25, 1994. [88]H. Shin, C. Gaessler, and H. Leier, “Reduction of Base-Collector Capacitance in InP/InGaAs HBT’s Using a Novel Double Polyimide Planarization Process”, IEEE Electron Device Lett., vol. 19, No.8, pp.297-299, 1998. [89]S. Tanaka, K. Kasahara, H. Shimawaki, and K. Honjo, “Stress current behavior of InAlAs/InGaAs and AlGaAs/GaAs HBT’s with polyimide passivation”, IEEE Electron Device Lett., vol. 13, pp.560-562, 1992. [90]H. Wang, G. I. Ng, H. Yang, and K. Radhakrishnan. “Understanding the Degradation of InP/InGaAs Heterojunction Bipolar Transistor Induced by Silicon Nitride Passivations,” International Conference on Indium Phosphide and Related Materials Conference Proceedings, 13th IPRM ,2001. [91]M. T. Fresina, Q. J. Hartmann, G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors”, IEEE Electron Device Lett., vol. 17, No.12, pp.555-556, 1996. [92]M. Hafizi, “Submicron, fully self-aligned HBT with an emitter geometry of 0.3µm ”, IEEE Electron Device Lett., vol. 18, No.7, pp.358-360, 1997. [93]Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “High-speed self-aligned InP/InGaAs double heterojuction bipolar transistor with high current driving capability”, IEE Electronics Lett., vol. 24, No.20, pp.1293-1294, 1998. [94]T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration”, IEEE Photon. Technol. Lett., vol. 5, No.1, pp.1-3, 1993. [95]T. Fresina, D. A. Ahmari, P. J. Maries, Q.J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors”, IEEE Electron Device Lett., vol. 16, No.12, pp.540-541, 1995. [96]M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application”, IEEE Electron Device Lett., vol. 12, No.11, pp.581-583, 1991.
|