(3.238.7.202) 您好!臺灣時間:2021/03/03 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱文揮
研究生(外文):Wen-Huei Chiou
論文名稱:具有穿透式射極障壁之磷化銦/砷化銦鎵異質接面雙極性電晶體之研製
論文名稱(外文):Fabrication of InP/InGaAs Heterojunction Bipolar Transistors with an Emitter Tunneling Barrier Structure
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:99
中文關鍵詞:穿透式射極障壁
外文關鍵詞:emitter tunneling barrier structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中我們研製以低壓有機金屬化學氣相沈積(LP-MOCVD)法成長的磷化銦(InP)系列異質接面雙極性電晶體,主要重點在於傳統元件結構的改良設計,元件特性量測與討論。
我們比較以磷化銦/砷化銦鎵(InP/InGaAs)為基礎設計的單、雙異質接面雙極性電晶體。在傳統寬能隙射極部分,我們設計以一未摻雜之穿透性能障結構取代作為侷限電洞的障壁。在單異質接面雙極性電晶體方面,元件具有可操作在低於20nA集極電流,並且有超過12個數量級的寬廣電流操作區域,於室溫下,直流電流增益可達200,但其崩潰電壓僅為2V;在雙異質接面雙極性電晶體方面,崩潰電壓改善為10V並且有較佳的輸出電導特性。另一方面,我們分別比較單、雙異質接面雙極性電晶體在高溫及低溫下的兩端、三端直流特性,並且比較基極金屬自我對準與非自我對準下之元件電流增益截止頻率fT 與最大震盪頻率fmax ,測量結果發現元件應用自我對準技術比非自我對準有較高的fT 及 fmax 。
此外,在磷化銦/砷化銦鎵(InP/InGaAs)穿透式射極障壁異質接面雙極性電晶體中分別使用d摻雜層及磷化銦鎵砷步階組成漸變層的技術於砷化銦鎵空間層之基-集與基-集異質接面。實驗結果顯示,兩結構的電流阻擋效應,皆已改善,另一方面,後者因其較低的電子撞擊游離率而改良了崩潰特性與輸出電導,但熱效應較為嚴重。在高頻特性部分,比較自我對準與非自我對準技術之元件特性,以探討此技術對元件微波特性之影響。
In this thesis, we present heterojunction bipolar transistors (HBTs) based on InP-based material system grown by a low-pressure-metal-organic chemical vapor deposition (LP-MOCVD) system. We focus on the improved designs of conventional device structures, the measurement and discussion of the device characteristics.
We present and compare the InP/InGaAs single and double heterojunction bipolar transistors. By utilizing an undoped tunneling barrier instead of the wide-gap emitter, a good hole confinement can be obtained. In the SHBTs, the devices can operate at the collector current level lower than 20nA. Also, a collector current operation regime wider than 12 orders in magnitude is obtained. At room temperature, the dc current gain of 200 of the SHBT is obtained, but the breakdown voltage is only 2V. The breakdown voltage and output conductance are improved in the DHBTs, and the breakdown voltage is 10V. On the other hand, the two-and three-terminal I-V characteristics at different temperature of the SHBTs and DHBTs are studied and compared. The high frequency characteristics of the studied devices with the self-aligned and non-self-aligned base contact techniques are compared. From experimental results, self-aligned devices have higher fT and fmax than non-self-aligned devices.
The InP/InGaAs tunneling emitter HBT with a d-doping InGaAs spacer and a step-graded B-C heterojunction is fabricated and demonstrated. Experimentally, the current blocking effect can be supressed by using the composite collector structure. The step-graded junction DHBT has better breakdown characteristics and output conductance because of the less carrier multiplication. Yet, the self-heating effect is more serious than the employment of d-doping InGaAs spacer. The high-frequency characteristics of the devices with self-aligned and non-self-aligned techniques are compared to investigate the influence on microwave characteristics.
Contents
Abstract (Chinese) 6
Abstract (English) 7
誌謝 13
Table Captions 16
Figure Captions 17
Chapter 1. Introduction ……………………………………………. 20
Chapter 2 Characterization of InP/InGaAs Tunneling Emitter Bipolar Transistors
2-1. Introduction ………………………………………………. 22
2-2. Device Structures…………………… 22
2-2-1. InP/InGaAs SHBT .. 22
2-2-1. InP/InGaAs DHBT 23
2-3. Devices Fabrication …………. 24
2-3-1. DC HBT Fabrication Process 24
2-3-2 RF HBT Fabrication Process 24
2-4. DC Characterization of InP/InGaAs SHBT and DHBT 25
2-5. High-Frequency Characterization… 28
2-6 Summary 31
Chapter 3. InP/InGaAs DHBTs with Tunneling Barriers and Composite Collector Structures
3-1. Introduction ……………………………………………….. 32
3-2. Device Structures and Fabrication ………………………… 33
3-3. DC Characterization of InP/InGaAs DHBTs ……………. 34
3-4. High-Frequency Characterization …………….…………… 39
3-5. Summary ………………………………………………….. 40
Chapter 4. Conclusions and Prospects 41
References ………………………………………………………………… 43
Tables 50
Figures 51
Publication List 98
References

[1]H. Kroemer, “Heterojunction Bipolar Transistor: What Should We Build? ” J. Vac. Sci. Technol., vol. B1, pp.126-130, 1983.
[2]S. S. Lu and C. C. Wu, “High-Current-Gain, Small-Offset-Voltage In0.49Ga0.51P/GaAs Tunneling Emitter Bipolar Transistors Grown by Gas-Source Molecular Beam Epitaxy.” IEEE Electron Device Lett., vol.13, pp.468-470, 1992.
[3]H. Kroemer, “Heterostructure Bipolar Transistors and Integrated Circuits.” IEEE Proc., vol.70, pp.13-25, 1982.
[4]H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design.” Appl. Phys. Lett. vol.47, pp.839-841, 1985.
[5]W. C. Liu and W. S. Lour, “An Improved Heterostructure-Emitter Bipolar Transistor (HEBT),” IEEE. Electron Device Lett., vol.12, No.9, pp.474-476,1991.
[6]W. C. Liu, S. Y. Cheng, H. J. Pan, J. Y. Chen, W. C. Wang, S. C. Feng, and K. H. Yu, “A new In0.5Ga0.5P/GaAs double heterojunction bipolar transistor (DHBT) prepared by MOCVD,” Journal De Physique, vol. 9, pp. 1155-1161, 1999.
[7]K. B. Thei, J. H. Tsai, W. C. Liu, and W. S. Lour, “Characteristics of functional heterostructure-emitter bipolar transistor (HEBT‘s),” Solid-St. Electron., vol. 39, pp. 1137-1142, 1996.
[8]Wen-Shiung Lour, Wen-Chau Liu, Der-Feng Guo, and Rong-Chau Liu, “Modeling the DC performance of hetrostructure-emitter bipolar transistor,” Jpn. J. Appl. phys., vol. 31, pp. 2388-2393, 1992.
[9]Der-Feng Guo, Wen-Chen Yeou, Wen-Shiung Lour, Wei-Chou Hsu, and Wen-Chau Liu, “Regenerative switching phenomenon of a GaAs metal-n-d(p+)-n-n+ structure,” Jpn. J. Appl. Phys., vol. 32, pp. L1011-L1013, 1993.
[10]Wen-Chau Liu, Jung-Hui Tsai, Lih-Wen Laih, Cheng-Zu Wu, Kong-Beng Thei, Wen-Shiung Lour, and Der-Feng Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995.
[11]W. Shockley, U. S. Patent No. 2 569 347 (Filed June 26, 1948, Issued September 25, 1951).
[12]H. Kroemer, “Theory of a wide-gap emitter for transistors.” Proc. IRE 45, 1535, 1957.
[13]W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation,” Solid-State Electron. 15, 12, 1972.
[14]V. Swaminathan and A. T. Macrander, Materials Aspects of GaAs and InP Based Structures, Prentice Hall, Upper Saddle River, N.J., 1991.
[15]R. N. Nottenburg, Y. K. Chen, M. B. Panish, D. A. Humphery, and R. Hamm, “Hot-electron InGaAs/InP heterostructure bipolar transistors with ft of 110GHz,” IEEE Electron Devices Lett. 10, 1 1989.
[16]B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[17]W. M. Webster, “On the variation of junction-transistor current amplification factor with emitter current,” Proc. IRE, vol. 54, pp. 914-920, 1954.
[18]Y. S. Hiraoka, J. Yoshida, and M. Azuma, “Two-dimensional analysis of emitter-size effect on current gain for AlGaAs/GaAs HBT’s,” IEEE Trans. Electron Device,vol. ED-34, pp. 721-725, 1987.
[19]J. I. Song, K. B. Chough, C. J. Palmstrom, B. P. Van der Gaag, and W. P. Hong, “Carbon-doped base InP/InGaAs HBTs with fT = 200GHz, ” Abstr. IEEE Device Research Conf., 1994, paper IVB-5.
[20]H. F. Chau and Y. C. Kao, “High fmax InAlAs/InGaAs heterojunction bipolar transistors, ” Tech. Dig. IEEE IEDM, 1993, pp.783-786.
[21]T. Oka, T. Tanoue, H. Masuda, K. Ouchi, and T. Mozume, “InP/InGaAs heterojunction bipolar transistor with extremely high fT over 200GHz,” Electron. Lett., 31, 2044-2045, 1995.
[22]S. Yamahata, K. Kurishima, H. Ito, and Y. Matsuoka, “Over-220GHz- fT and – fmax InP/InGaAs double-heterojunction bipolar transistors with a new hexagonal-shaped emitter,” Tech. Dig. IEEE GaAs IC Symp., 1995, pp. 163-166.
[23]K. Kurishima, H. Nakajima, S. Yamahata, T. Kobayashi, and Y. Matsuoka, “Growth, design and performance of InP-based heterostructure bipolar transistors,” IEICE Trans. Electron., E78-C, 1171-1181 ,1995.
[24]S. Yamahata, K. Kurishima, H. Nakajima, and T. Kobayashi, and Y. Matsuoka, “Ultra-high fmax and fT InP/InGaAs double-heterojunction bipolar transistors with step-graded InGaAsP collector,” Tech. Dig. IEEE GaAs IC Symp., 1994, pp. 345-348.
[25]W. C. Liu, D. F. Guo, and W. S. Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double heterostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, pp. 1441-1443, 1992.
[26]Jung-Hui Tsai, Lih-Wen Laih, Hui-Jung Shih, Wen-Chau Liu, and Hao-Hsiung Lin, “On the recombination currents effect of heterostructure-emitter bipolar transistors (HEBT’s),” Solid-St. Electron., vol. 39, pp. 1723-1730, 1996.
[27]Shiou-Ying Cheng, Hsi-Jen Pan, Yung-Hsin Shie, Jing-Yuh Chen, Wen-Lung Chang, Wei-Chou Wang, Po-Hung Lin, and Wen-Chau Liu, “Influence of d-doping sheet and setback layer on the performance of InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 13, pp. 1187-1192, 1998.
[28]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp.630-633, 1998.
[29]W. C. Liu and W. S. Lour, “Negative-differential-resistance (NDR) superlattice-emitter transistor,” Jpn. J. Appl. Phys., vol. 30, pp. L564-L567, 1991.
[30]W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE J. Solid-St. Circuits, vol. 27, pp. 2214- 2219, 1992.
[31]W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie and W. C. Liu, “Investigation of InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp.630-633, 1998.
[32]Wen-Chau Liu, Shiou-Ying Cheng, Wen-Lung Chang, Hsi-Jen Pan, and Yung-Hsin Shie, “Application of d-doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
[33]Der-Feng Guo, Shiuh-Ren Yih, Jing-Tong Liang and Wen-Chau Liu, “Characteristics of a GaAs Metal-n+-n-d(p+)-n-n+ Switch,” Solid-St. Electron., vol. 37, pp. 223-229, 1994.
[34]J. C. Campbell, A. G. Dentai, C. A. Burrus, Jr., and J. F. Ferguson, “InP /InGaAs heterojunction phototransistors,” IEEE J. Quantum Electron. QE-17, 264, 1981.
[35]K. Tabatabaie-Alavi, R.J. Markunas and C.G. Fonstad, “LPE-grown InGaAsP/InP heterojunction bipolar transistors,” in Tech. Dig. IEEE IEDM 643, 1979.
[36]M. Tobe, Y.Amemiya, S. Sakai and M. Umeno, “High-sensitivity InGaAsP/InP phototransistors,” Appl. Phys. Lett. 37, 73 1980.
[37]H. Kanbe, J.C. Vlcek and C.G. Fonstad, “(In,Ga)As/InP n-p-n heterojunction bipolar transistors grown by liqued phase wpitaxy with high dc current gain,” IEEE Electron Device Lett. EDL-5, 5 1984
[38]J. Xu and M. Shur, “A tunneling emitter bipolar transistor”, IEEE Electron Device Lett., vol. 7, pp. 416-418, July 1986.
[39]Levi, A. F. J., Nottenburg, R. N. Chen. Y. K., and Cunningham, J. E., “AlAs/GaAs tunnel emitter bipolar transistor”, Appl. Phys. Lett., 1989, 54, pp. 2250-2252.
[40]Najjar, F. E., Rasulescu, D. C., Chen, Y. K., Wicks, G. W., Tasker, P. J., and Easman, L. F., “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar tranistor”, Appl. Phys Lett.,1987, 50, pp. 1915-1917.
[41]J. R. Hayes, A. C. Gossard, and W. Wiegann, Electron. Lett. 20 (1984) 766.
[42]L. M. Su, N. Grote, R. Kaumanns, and H. Schroeter, Appl. Phys. Lett. 47 (1985) 28.
[43]R. N. Nottenburg, H. Temkin, M. B. Panish, R. Bhat, J. C. Bischoff, IEEE Electron Device Lett. 7 (1986) 643.
[44]A. W. Hanson, S. A. Stockman, and G. E. Stillman, IEEE Electron Device Lett. 14 (1993) 25.
[45]J. C. Vlcek, C. G. Fonstad, Electron. Lett. 27 (1991) 1213.
[46]M. Ohkubo, A. Iketani, T. Ljichi, and T. Kikuta, “InGaAs/InP double-heterojunction bipolar transistors with step graded InGaAsP between InGaAs base and InP collector grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp.2697-2699, 1991.
[47]B. Willen and H. Asonen, “High-gain, high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[48]J. Hu, H. F. Chau, D. Pavlidis, K. Tomizawa, and P. Marsh, “Control of InP/InGaAs heterojunction bipolar transistor performance through the use of undoped collectors,” in Proc IEEE/Cornell Conf. On Advance Concepts in High Speed Semiconductor Devices and Circuits, Aug. 1991, pp. 104-113.
[49]R. J. Malik, A. Feygenson, D. Ritter, R. A. Hamm, M. B. Panish, J. Nagle, K. Alavi, and A.Y. Cho, “Temperature Dependence of Collector Breakdown Voltage and Output Conductance in HBT’s with AlGaAs, GaAs, InP, and InGaAs Collectors,” IEEE IEDM pp. 805-808, 1991.
[50]H. F. Chau, D. P. Pavlidis, J. Hu, and K. Tomizawa, “Breakdown-Speed Considerations in InP/InGaAs single- and Double- Heterostructure Bipolar Transistors,” IEEE, Transactions on Electron Devices, vol. 40, No. 1, January 1993.
[51]J. R. Hayes, A. F. J. Levi, A. C. Gossard, and J. H. English, “Base transport dynamics in a heterojunction bipolar transistors, ” Appl.Phys.Lett, vol. 49, No. 21, November 1986.
[52]W. Liu and J. S. Harris, Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors, ” IEEE Trans. Electron Devices, vol. 39, pp.2726-2732, 1992.
[53]M.S. Gupta. “Power gain in feedback amplifiers,” IEEE Trans. on Microw. Theory and Tech. 40, (5), 864-79 (1992).
[54]M. T. Fresina, “High-Frequency Indium Phosphide/ Indium Gallium Arsenide Heterojunction Bipolar Transistors M.S. thesis,” University of Illinois at Urbana-Champaign, 1992.
[55]William Liu, handbook of III-V heterojunction bipolar transistors, Wiley, New York.
[56]K. Eda, M. Inada, Y. Ota, A. Nakagawa, T. Hirose, and M. Yanagihara, “Emitter-Base-Collector Self-Aligned Heterojunction Bipolar Transistors Using Wet Etching Process,” IEEE Electron Devices Lett., vol. 7, no.12, pp.694-696, 1986.
[57]W. U. Liu, D. Costa, and J. Harris, “Novel Doubly Self-Aligned AlGaAs/GaAs HBT,” Electronics Letters., vol. 26, no.17, pp.1361-1362, 1990.
[58]W. Lee, S. Ueda, D., MA, T., Pao, Y. C., and Harris, J. S., “Effect of emitter-base spacing on the current of AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 10, pp.200-202, 1989.
[59]J. Xu and M. Shur, “A tunneling emitter bipolar transistor,” IEEE Electron Device Lett., vol. 7, pp. 416-418, 1986.
[60]F. E. Najjar, D. C. Radulescu, Y. K. Chen, G. W. Wicks, P. J. Tasker, and L. F. Eastman, “DC characterization of the AlGaAs/GaAs tunneling emitter bipolar transistor,” Appl. Phys. Lett., vol. 50, pp.1915-1917, 1987.
[61]A. F. J. Levi, R. N. Nottenburg, and Y. K. Chen, “AlAs/GaAstunnel emitter bipolar transistor,” Appl. Phys. Lett., vol. 54, pp.2250-2252, 1989.
[62]E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “Reduction of the surface recombination current in InGaAs/InP pseudo-heterojunction bipolar transistors using a thin InP passivation layer,” IEEE Electron Device Lett., vol. 10, pp. 585-587, 1989.
[63]E. Tokumitsu, A. G. Dentai, and C. H. Joyner, “GaInAs/InP pseudo-heterojunction bipolar transistors grown by MOVPE,” IEE Electron. Lett., vol. 25, pp.1539-1540, 1989.
[64]S. S. Lu and C. C. Wu, “High-current-gain small-offset-voltage In0.49Ga0.51P/GaAs tunneling emitter bipolar transistors grown by gas source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 468-470, 1992.
[65]S. S. Lu, C. C. Wu, and C. C. Huang, “DC characterization of the Ga0.51In0.49P/GaAs tunneling emitter bipolar transistor,” Appl. Phys. Lett., vol. 60, pp. 2138-2140, 1992.
[66]H. R. Chen, C. P. Lee, C. Y. Chang, K. L. Tsai, and J. S. Tsang, “Current gains of AlAs/GaAs tunneling emitter bipolar transistors with 25-500Åbarrier thickness,” IEE Electron. Lett., vol. 29, pp.1883-1884, 1993.
[67]N. Valsaraj, R. Sabbah, W. Jones, and K. Ikossi-Anastasiou, “Performance of InAlGaAs/InGaAs HBTs with tunneling AlAs barrier layer,” Proc. IEEE/Cornell Conf. on High Speed Semicond. Devices and Circuits, pp. 154-163, 1997.
[68]P. Zwicknagl, U. Schaper, L. Schleicher, H. Siwerris, K. H. Bachem, T. Lauterbach, and W. Pletschen, “ High speed non-selfaligned GaInP/GaAs-TEBT,” IEE Electron. Lett., vol. 28, pp.327-329, 1992.
[69]M. Ohkubo, A. Iketani, T. Ljichi, and T. Kikuta, “InGaAs/InP double-heterojunction bipolar transistors with step graded InGaAsP between InGaAs base and InP collector grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 59, pp.2697-2699, 1991.
[70]B. Willen and H. Asonen, “High-gain, high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[71]S. C. Lee and H. H. Lin, “Transport theory of the double heterojunction bipolar transistor based on current balancing concept,” J. Appl. Phys., vol. 59, pp. 1688-1695, 1986.
[72]C. C. Wu and S. S. Lu, “Small offset-voltage InGaP/GaAs double-barrier bipolar transistor,” IEEE Electron Device Lett., vol. 16, pp. 418-420, 1992.
[73]D. Caffin, A.-M. Duchenois, F. Heliot, C. Besombes, Jean-Louis Benchimol, and P. Launay “Base-Collector Leakage Currents in InP/InGaAs Double Heterojunction Bipolar Transistors,” IEEE Transactions on Electron Devicest., vol. 44, no.6, pp. 930-936, 1997.
[74]K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “Fabrication and characterization of high-performance InP/InGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 1319-1326, 1994.
[75]J. F. Jensen, W. E. Stanchina, R. A. Metzger, D. B. Rensch, R. J. Ferro, P. F. Lou, M. W. Pierce, T. V. Kargodorian, and Y. K. Allen, “Improved AlInAs/GaInAs HBTs for high speed circuits,” SPIE, vol.1288, pp. 57-68, 1990.
[76]A. Marty, G. Rey, and J. P. Bailbe, “Electrical behavior of an npn GaAlAs/GaAs heterojunction transistor,” Solid-State Electron , vol. 22, pp. 549-557, 1979.
[77]Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.
[78]B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron Device Lett., vol. 16, pp. 479-481, 1995.
[79]J. Hu, X. G. Xu, J. A. H. Stotz, S. P. Watkins, A. E. Curzon, M. L. W. Thewalt, N. Matine, and C. R. Bolognesi, “Type II photoluminescence and conduction band offsets of GaAsSb/InGaAs ans GaAsSb/InP heterostructures grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 73, pp. 2799-2801, 1998.
[80]M. Peter, N. Herres, F. Fuchs, K. Winkler, K.-H. Bachem, and J. Wagner, “Band gaps and band offsets in strained GaAs1-ySby on InP grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 74, pp. 410-412, 1999.
[81]C. R. Bolognesi, N. Matine, Martin W. Dvorak, P. Yeo, X. G. Xu, and Simon P. Watkins “InP/GaAsSb/InP Double HBTs: A New Alternative for InP-Based DHBTs,” IEEE Transaction on Electron Devices., vol. 48, no.11, pp.2631-2638, 2001.
[82]M. Agethen, S. Schuller, P. Velling, W. Brockerhoff, F.-J. Tegude, “Cryogenic Temperature Dependence and Modelling of RF-noise Parameters of Carbon Doped InP/InGaAs HBT,” International Conference on Indium Phosphide and Related Materials Conference Proceedings, 13th IPRM ,2001.
[83]C. Ito, S. Yamahata, and K. Kurishima, “Evaluation of base transit time in ultra-thin carbon doped base InP/InGaAs heterojunction bipolar transistors” IEEE Electronics lett., vol. 32, pp.1413-1415, 1990.
[84]C. Ito, S. Yamahata, N. Shigekawa, K. Kurishima, and Y. Matsuoka, “High-speed carbon-doped-base InP/InGaAs heterojunction bipolar transistors grown by MOCVD ”, IEE Electronics Lett., vol. 31, pp.2128-2130, 1995.
[85]W. Hanson, S. A. Stockman, and G. E. Stillman, “Comparison of InGaP/GaAs single and double-heterojunction bipolar transistors with a carbon-doped base”, IEEE Electron Device Lett., vol. 14, No.1, pp.25-28, 1993.
[86]W. Hanson, S. A. Stockman, and G. E. Stillman, “InP/InGaAs heterojunction bipolar transistors with a carbon-doped base grown by MOCVD”, IEEE Electron Device Lett., vol. 13, No.10, pp.504-506, 1992.
[87]W. P. Hong, J. I. Song, C. J. Palmstrom, B. V. D. Gaag, K. B. Chough, and J. R. Hayes, “DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors ”, IEEE Trans. Electron Devices., vol. 41, No.1, pp.19-25, 1994.
[88]H. Shin, C. Gaessler, and H. Leier, “Reduction of Base-Collector Capacitance in InP/InGaAs HBT’s Using a Novel Double Polyimide Planarization Process”, IEEE Electron Device Lett., vol. 19, No.8, pp.297-299, 1998.
[89]S. Tanaka, K. Kasahara, H. Shimawaki, and K. Honjo, “Stress current behavior of InAlAs/InGaAs and AlGaAs/GaAs HBT’s with polyimide passivation”, IEEE Electron Device Lett., vol. 13, pp.560-562, 1992.
[90]H. Wang, G. I. Ng, H. Yang, and K. Radhakrishnan. “Understanding the Degradation of InP/InGaAs Heterojunction Bipolar Transistor Induced by Silicon Nitride Passivations,” International Conference on Indium Phosphide and Related Materials Conference Proceedings, 13th IPRM ,2001.
[91]M. T. Fresina, Q. J. Hartmann, G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors”, IEEE Electron Device Lett., vol. 17, No.12, pp.555-556, 1996.
[92]M. Hafizi, “Submicron, fully self-aligned HBT with an emitter geometry of 0.3µm ”, IEEE Electron Device Lett., vol. 18, No.7, pp.358-360, 1997.
[93]Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “High-speed self-aligned InP/InGaAs double heterojuction bipolar transistor with high current driving capability”, IEE Electronics Lett., vol. 24, No.20, pp.1293-1294, 1998.
[94]T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration”, IEEE Photon. Technol. Lett., vol. 5, No.1, pp.1-3, 1993.
[95]T. Fresina, D. A. Ahmari, P. J. Maries, Q.J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors”, IEEE Electron Device Lett., vol. 16, No.12, pp.540-541, 1995.
[96]M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application”, IEEE Electron Device Lett., vol. 12, No.11, pp.581-583, 1991.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔