跳到主要內容

臺灣博碩士論文加值系統

(54.161.24.9) 您好!臺灣時間:2022/01/17 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳春元
研究生(外文):Chun-Yuan Chen
論文名稱:具有自我對準式與超晶格射極式結構之異質接面雙極性電晶體之研製
論文名稱(外文):Fabrication of Self-Aligned and Superlattice-Emitter Heterojunction Bipolar Transistors
指導教授:劉文超劉文超引用關係
指導教授(外文):Wen-Chau Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:108
中文關鍵詞:自我對準超晶格雙極性電晶體
外文關鍵詞:HBTself-alignedsuperlattice
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
異質接面雙極性電晶體由於具有極佳的頻率特性,近幾年來已被廣泛的應用在數位及微波積體電路上,有鑑於此,在本論文中,我們將焦點著重在高頻元件的製程上,且成功的研製出以在低壓有機金屬化學氣相沉積法磊晶(LP-MOCVD)成長砷化鎵基板的異質接面雙極性電晶體。在第二章中我們比較有無自我對準製程技術的元件間特性的差別,而在第三章中,我們研製出一個磷化銦鎵/砷化鎵超晶格射極共振穿透雙極性電晶體。
因為聚亞醯胺(polyimide)具有低的相對介電係數、可降低表面複合電流、及較好的製程良率,因此我們於研究的元件上長一層聚亞醯胺(polyimide)鈍化層;此外,我們也研製了具有自我對準技術的元件;此元件可以得到一個較高的電流增益及較好的高頻表現特性;實驗上元件具有高於100的共射極電流增益值、高於8伏特的共射極崩潰電壓(BVCEO)、單一電流增益截止頻率(fT)約為20GHZ及最大振盪頻率(fmax)大於7.5GHZ。在第三章中,我們研製出一個磷化銦鎵/砷化鎵超晶格射極共振穿透雙極性電晶體,當提供一個大的基極電流(IB=200mA)時可得到一個高達220的共射極電流增益,在室溫下,亦可得到一個好的特性及有趣的三端負微分電阻現象。
Over the past years, heterojunction bipolar transistors (HBT’s) have been widely researched for digital and microwave applications due to the high frequency performances combined with high current driving capability. In this thesis, we focus on the process technology of high frequency device and have successfully fabricated and demonstrated GaAs-based heterojunction bipolar transistors (HBT's) by low pressured-metal organic chemical vapor deposition (LP-MOCVD). The performance of devices fabricated in self-aligned and traditional technology are measured and researched. In the chapter 3, The InGaP/GaAs superlattice emitter resonant tunneling bipolar transistors (SE-RTBT's) are fabricated and studied.
The polyimide passivation had been used in the studied device due to low relative dielectric constant, low surface recombination current and good yield. In addition, the devices with self-aligned technology have been fabricated. The high common emitter current gain and good high frequency performance are obtained. A typical device structure combined with the standard fabrication process exhibit a common-emitter current gain b>100, a common-emitter breakdown voltage BVCEO > 8 V, a unity current gain cutoff frequency fT @ 20 GHZ, and a maximum oscillation frequency fmax > 7.5 GHZ. In the chapter 3, an In0.49Ga0.51P/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT) has been fabricated. The common-emitter current gain up to 220 is obtained under the applied larger base current of IB=200mA/step at 300K. The good transistor performances and an interesting three-terminal controlled multiple N-shaped NDR phenomena are obtained at room temperature.
Abstract
Table Captions
Figure Captions
Chapter 1. Introduction
1.1 Brief history of heterojunction bipolar transistors (HBT’s)…………………..2
1.2. Advantages of InGaP/GaAs material system…………………………....…...3
1.3. Organization of this thesis ..............................….............................................4
Chapter 2. Self-Aligned InGaP/GaAs Heterojunction Bipolar Transistor
with Low Emitter Resistance Utilizing InGaAs Cap Layer
2.1. Introduction ............................................................................................….....5
2.2. Fabrication of InGaP/GaAs HBT ...............................................................6
2.2.1 Device structure and fabrication process………………………………..6
2.2.2 Polyimide growth and interconnection………………………………….7
2.2.3 Influence of Polyimide on the device characteristics….………………..8
2.2.4 Influence self-aligned emitter etch………………………………………9
2.3. Experimental results and discussion……………………....................……….9
2.3.1 DC performance of InGaAs/GaAs HBT’s………………………………9
2.3.2 High frequency characterization……………………………………….13
2.4. Summary……..................................................…..........................................15 Chapter 3. In0.49Ga0.51P/GaAs Superlattice-Emitter Resonant Tunneling
Bipolar Transistor (SE-RTBT)
3.1. Introduction ................................................…................…......................…..17
3.2. Device Fabrication …………………….............................................……....19
3.3. Experimental results and discussion .....…...……………..…………………19
3.4. Conclusion................................……………………………………………..24

Chapter 4. Conclusion and Prospect
4.1. Achievement...........................................................................................…....25
4.2. Future Work .................................................................……………………..26
References
Tables
Figures
Publication List
Acknowledgment and Biography
References
[1]S. S. Tan and A. G. Milnes, “ Consideration of the frequency performance potential of GaAs homojunction and heterojunction n-p-n transistors” , IEEE Trans. Electron Devices, Vol. ED-30, p.1289, 1983.
[2]T. Ishibashi and Y. Yamauchi, “ A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure” , IEEE Trans. Electron Devices, Vol. ED-35, p.401, 1988.
[3]J. I. Song, C. Caneau, K-B Chough, and W. P. Hong, “ GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax, and breakdown voltage” , IEEE Electron Device Lett, Vol. EDL-15, p.10, 1994.
[4]W. Schockley , " Circuit elements utilizing semiconductive material ", U. S. Patent, N. 2569, p. 347, 1951.
[5]H. Kroemer, " Heterostructure bipolar transistors and integrated circuits ", IEEE Proc. Vol. 70, p.13, 1982.
[6]S.Brodjo, T.J. Riley, and G.T. Wright, “The heterojunction transistor and the space charge limited triode.” B.J. Appl. Phys. Vol. 16, p.133, 1965.
[7]W.P. Dumke, J.M. Woodall, and V.L. Rideout, “GaAs-GaAlAs heterojunction transistor for high frequency operation.” Solid-State Electron. Vol. 15, p.12, 1972.
[8]M.J. Mondry and H. Kroemer, " Heterostructure bipolar transistor using a (Ga,InP) emitter on a GaAs base, grown by molecular beam epitaxy.” IEEE Electron Device Lett. Vol. EDL-6, p.175, 1985.
[9]S.L. Delage, M.A. di Forte-Poisson, H. Blanck, C. Brylinski, E. Chartier, E. Chartier, and P. Collot, “First microwave characterization of LP-MOCVD grown GaInP/GaAs self-aligned HBT.” Electron. Lett. Vol. 27, p.253, 1991.
[10]U. Eriksson, P. Evaldsson, and K. Streubel, “ Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure ”, IEEE Photon. Technol. Lett., Vol. 11, p. 403, 1999.
[11]H. Wang, K. W. Chang, L.T. Tran, J.C. Cowles, T.R. Block, E.W. Lin, G.S. Dow, A.K. Oki, D.C. Streit, B.R Allen, “ Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology ”, IEEE J. Solid State Circuits, Vol. 31, p. 1419, 1996.
[12]P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, P. Bhattacharya, “ Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides ”, IEEE Trans. Electron Devices, Vol. 43, p. 373, 1996.
[13]J. Chen, J. R. Sites, I. L. Spain, M. J. Hafich, and G. Y. Robinson, “Band Offset of GaAs/In0.48Ga0.52P Measured Under Hydrostatic Pressure,” Appl. Phys. Lett., Vol. 58, p.744, 1991.
[14]M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic, ”Determination of Valence and Conduction-Band Discontinuities at the (Ga,In)P/GaAs Heterojunction by C-V Profiling,” J. Appl. Phys., Vol. 61, p.643, 1987.
[15]M. O. Watanable and Y. Ohba, “Interface Properties for GaAs/InGaAlP Heterojunction by the Capacitance-Voltage Profiling Technique,” Appl. Phys. Lett., Vol. 50, p.906, 1987.
[16]T. Kobayashi, K. Taira, F. NaKamura, and H. Kawai, ”Band Lineup for a GaInP/GaAs Heterojunction Measured by a High-Gain Npn Heterojunction Bipolar Transistor Grown by Metalorganic Chemical Vapor Deposition,” J. Appl. Phys., Vol. 65, p.4898, 1989.
[17]J. Masum, P. Parmiter, T. J. Hall, and M. Crouch, “Current Analysis of Polyimide Passivated InGaP/GaAs HBT,” IEE Proc. –Circuits Device Syst., Vol. 143, p.307, 1996.
[18]J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibbler, “Ultralow recombination velocity at GaInP/GaAs heterojunction.” Appl. Phys. Lett. Vol. 55, p.1208, 1989.
[19]D. Costa and J. S. Harris, “Low-frequency noise properties of N-p-n AlGaAs/GaAs heterojunction bipolar transistors.” IEEE Trans. Electron Devices vol. 39, p.2383, 1992.
[20]R. Plana, J. Graffeuil, S. L. Delag, H. Blanck, M. A. di Forte-Poisson, C. Brylinski, and E. Chartier, “Low frequency noise in self-aligned GaInP/GaAs heterojunction bipolar transistor.” Electron. Lett. Vol. 28, p.2354, 1992.
[21]W. J. Ho, M. F. Chang, A. Sailer, P. Zampardi, D. Deakin, B. McDermott, R. Pierson, J. A. Higgins, and J. Waldrop, “GaInP/GaAs HBT’s for high-speed integrated circuit applications.” IEEE Electron Device Lett. Vol. 14, p.572, 1993.
[22]A. W. Hanson, Ph.D. dissertation, University of Illinois (1994).
[23]M. T. Fresina, M.S. thesis, University of Illinois (1996).
[24]M. T. Fresina, M.S. thesis, University of Illinois (1993).
[25]S. Thomas, C. A. Martino, M. T. Fresina, D. A. Ahmari, D. W. Barlage, W. H. Chang, M. Feng, and G. E. Stillman, “Growth and characterization of high-speed InP/InGaAs bipolar transistors using N+-InP contacting layers.” Proceedings of the Eighth International Conference on InP and Related Materials, Germany (1996).
[26]D. A. Ahmari, M. S. thesis, University of Illinois (1996).
[27]T. Nittono, H. Ito, O. Nakajima, and T. Ishibashi, “Extremely low resistance non-alloyed ohmic contacts to n-GaAs using compositionally graded InxGa1-xAs layers,” Japan. J. Appl. Phys., Vol. 25, p. L865, 1986.
[28]K. Nagata, O. Nakajima, Y. Yamauchi, T. Nittono, H. Ito, and T. Ishibashi, “Self-aligned AlGaAs/GaAs HBT with Low Emitter Resistance Utilizing InGaAs Cap Layer,” IEEE Trans. Electron Devices Vol. ED-35, p.2, 1988.
[29]M. T. Fresina, D. A. Ahmari, Q. J. Hartmann, P. J. Mares, M. Feng, and G. E. Stillman, “Manufacturable self-aligned InGaP/GaAs HBT’s fabricated using a citric acid-based etch,” in 1995 U.S. Conf. Gallium-Aresenide Manufacturing Technology, New Orleans, LA, 1995.
[30]M. T. Fresina, Student Member, IEEE, D. A. Ahmari, P. J. Mares, Member, IEEE, Q. J. Hartmann, M. Feng, Fellow, IEEE, and G. E. Stillman, Fellow, IEEE, ”High-speed, Low-Noise InGaP/GaAs Heterojunction Bipolar Transistors,” IEEE Electron Device Lett, Vol. 16, p.540, 1995.
[31]C. P. Wong, “Polymers for electronic and photonic applications,” (Academic Press, 1993), p. 157.
[32]J. Masum, P. Parmiter, T. J. Hall, M. Crouch, “Current analysis of polyimide passivated InGaP/GaAs HBT,” IEE Proc.-Circuits Device Syst., Vol. 143, No 5, p. 307, 1996.
[33]PEARTON, S. J., REN, F., HOBSON, W. S., ABERNATHY, C. R., and MASAITIS, R. L., “Surface recombination velocities on processed InGaP p-n junction”, Appl. Phys. Lett., Vol. 63, p. 3160, 1993.
[34]YANG, Y. F., HSU, C. C., and YANG, E. S., “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors”, IEEE Ttans. Electron. Devices, Vol. 41, No 5, p. 643, 1994.
[35]TIWARI, S., FRANK, D. J., and WRIGHT, S. L., “Surface recombination in GaAsAl/GaAs heterostructure bipolar transistors”, J. Appl. Phys. Lett., Vol. 64, p. 5009, 1988.
[36]DODD, P. E., STELLWAG, T. B.,MELLOCH, M. R., and LUNDSTROM, M. S., “Surface and perimeter recombination in GaAs diodes: An experimental and theoretical investigation”, IEEE Ttans. Electron. Devices, Vol. 38, No 6, p. 1253, 1991.
[37]HIROSE, K., NOGUCHI, T., UCHIYAM, A., and UDA, M., ”Surface states for GaAs(001) surfaces observed by photoemission yield spectroscopy”, Jpn. J. Appl. Phys., Vol. 30, p. 3741, 1991.
[38]S. J. Prasad, B. Vetanen, C. Haynes, S. Park, I. Beers, S. Diamond, G. Pubanz, J. Ebner, S. Sanielevici, and A. Agoston, “High-performance AlGaAs/GaAs HBT IC technology.” SPIE Symposium on Compound Semiconductor Physics and Device (1992).
[39]N. Hayama, M. Madihian, A. Okamoto, H. Toyoshima, and K. Honjo, “Fully self-aligned AlGaAs/GaAs heterojunction bipolar transistors for high-speed integrated-circuits application.” IEEE Trans. Electron Devices, Vol. 35, p. 1771, 1988.
[40]M. Inada, Y. Ota, A. Nakagawa, N. Yanagihara, T. Hirose, and K. Eda, “AlGaAs/GaAs heterojunction bipolar transistors with small size fabrication by a multiple self-alignment process using one mask.” IEEE Trans. Electron Devices, Vol. ED-34, p. 2405, 1987.
[41]M-C.F. Chang, P. M. Asbeck, K. C. Wang, G. J. Sullivan, N-H. Sheng, J. A. Higgins, and D. L. Miller, “AlGaAs/GaAs heterojunction bipolar transistors fabricated using a self-aligned dual-lift-off process.” IEEE Electron Device Lett. Vol. EDL-8, p. 303, 1987.
[42]H. Kroemer, “Heterostructure bipolar transistors: What should we build ?” J. Vac. Sci Technol. Vol. B1, p. 126, 1983.
[43]Cheng K. Y., Cho A. Y., Lee T. P., Burrus C. A., Manchon D. D. Jr. “Back-illuminated InGaAs/InP p-i-n photodiodes prepared by molecular beam epitaxy”, IEEE Trans. Electron. Devices, Vol 27, p. 2188, 1980
[44]Wu M. C., Chen Y. J., Ho P. T., “GaAs/AlGaAs quantum well laser with monolithically integrated extended glass waveguide cavity”, IEE Electron. Lett., Vol 27, p. 3, 1911
[45].Mishra U. K., Wu Y. F., Keller B. P., Keller S., Denbaars S. K., “GaN microwave electronics”, IEEE Trans. Micro. Theory and Tech,.Vol 46, p. 756, 1998
[46]Liu W. C., Chang W. L., Lour W. S., Cheng S. Y., Shie Y. H., Chen J. Y., Wang W. C., Pan H. J. “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic HEMT”, IEEE Electron Device Lett., Vol 20, p. 274, 1999
[47]Hong W. P., Song J. I., Palmstrom C. J., Gaag B. V. D., Chough K. B., Hayes J. R. “DC, RF, and noise characteristics of carbon-doped base InP/InGaAs heterojunction bipolar transistors”, IEEE Trans. Electron Devices, Vol 41, p. 19, 1994
[48]Chen T. R., Chen P. C., Gee C., Chaim N. B. “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration”, IEEE Photon. Technol. Lett., Vol 5, p. 1,. 1993
[49] Prakash D. P., Jalali B., Xie Y. M., Fetterman H. R., Humphrey D. A., Kapre R. R., Tsang W. T. “Integrated waveguide/HBT technology for mm-wave optoelectronic applications” Device Research Conference University of Colorado, p. 20, 1994
[50]Capasso F., Sen S., Beltram F., Lunaardi L. M., Vengurlekar A. S., Smith P. R., Shah N. J., Malik R. J., Cho A. Y. “Quantum functional devices: resonant-tunneling transistors, circuits with reduced complexity and multiple-valued logic”, IEEE Trans. Electron Devices, Vol 36, p. 2065, 1989
[51] Liu W. C., Laih L. W., Lour W. S., Tsai J. H., Lin K. W., Cheng C. C. “Multiple-route current-voltage (I-V) characteristics of GaAs-InGaAs metal-insulator-semiconductor (MIS) like structure for multiple-value logic applications”, IEEE J. Quantum Electron., Vol 32, 1996
[52]Lunardi L. M., Sen S., Capasso F., Smith P. R., Sivco D. L., Cho A. Y. “Microwave multiple-state resonant-tunneling bipolar transistor”, IEEE Electron Device Lett., Vol 10, 1989
[53]Capasso F., Kiehl R. A. “Resonant tunneling transistor with quantum well base and high-energy injection: A new negative differential resistance device”, J. Appl. Phys., Vol 58, p. 1366, 1985
[54]Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs Heterijunction-Emitter Bipolar Transistors and Heterojunction Bipolar Transistor,” IEEE Trans. Electron Device, Vol. 42, No. 7, p. 1210, 1995.
[55]S. S. Lu and C. C. Wu, “High-Current-Gain, Small-Offset-Voltage In0.49Ga0.51P/GaAs Tunneling Emitter Bipolar Transistor Grown by Gas-Source Molecular Beam Epitaxy,” IEEE Electron Device Lett., Vol. 13, p. 468, 1992.
[56]W. Liu, A. C. Seabaugh, T. S. Henderson, A. Yuksel, E. A. Beam III, and S. K. Fan, “Observation of Resonant Tunneling at Room Temperature in GaInP/GaAs/GaInP Double Heterojunction Bipolar Transistor,” IEEE Trans. Electron Devices, Vol. 40, p. 1384, 1993.
[57]F. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, “Quantum Functional Devices: Resonant-Tunneling Transistors, Circuits with Reduced Complexity, and Multiple-Valued Logic,” IEEE Trans. Electron Devices, Vol. 36, p. 2065, 1989.
[58]E. R. Brown, J. R. Soderstrom, C. D. Parker, L. J. Mahoney, K. M. Molvar, and T. C. McGill, “Oscillation Up to 712 GHZ in InAs/AlSb Resonant-Tunneling Diodes,” Appl. Phys. Lett., Vol. 58, p. 2291, 1991.
[59]M. C. Wu and W. T. Tsang, “Quantum-Switched Heterojunction Bipolar Transistor,” Appl. Phys. Lett,. Vol. 55, p. 1771, 1989.
[60]N. Yokoyama, K. Imamura, S. Muto, S. Hiyamizu, and H. Nishi, “A New Functional, Resonant-Tunneling Hot Electron Transistor (RHET),” Jpn. J. Appl. Phys., Vol. 24, p. L853, 1985.
[61]W. C. Liu and W. S. Lour, “A New Functional, Resonant-Tunneling Bipolar Transistor with a Superlattice Emitter,” J. Appl. Phys., Vol. 70, p. 485, 1991.
[62]S. Sen, F. Capasso, A. L. Hutchinson, and A. Y. Cho, “Room-Temperature Operation of Ga0.47In0.53As/Al0.48In0.52As Resonant Tunneling Diodes,” IEE Electron Lett. Vol. 23, p. 1229, 1987.
[63]R. Tsu and L. Esaki, “Tunneling in a Finite Superlattice,” Appl. Phys. Lett., Vol. 22, p. 562, 1973.
[64]S. Sen, F. Capasso, D. Sivco, and A. Y. Cho, “New Resonant-tunneling Devices with Multiple Negative Resistance Regions and High Room-Temperature Peak-to-Valley Ration,” IEEE Electron Devices Lett., Vol. 9, p. 402, 1988.
[65]F. Capasso, S. Sen, A. C. Gossard, A. L. Hutchinson, and J. H. English, “Quantum-Well Resonant Tunneling Bipolar Transistor Operating at Room Temperature,” IEEE Electron Devices Lett., Vol. 7, p. 573, 1986.
[66]W. S. Lour and W. C. Liu, “Negative-Differential-Resistance (NDR) Superlattice-Emitter Transistor,” Jpn. J. Appl. Phys. Vol. 30, p. L564, 1991.
[67]W. C. Liu and W. S. Lour, “Temperature-Dependence of Double Negative Differential Resistance of Superlattice-emitter Transistor,” Solid-State Electron., Vol. 34, p. 921, 1991.
[68]S. Vatannia and G. Gildenblat, “Airy’s Function Implementation of the Transfer-Matrix Method for Resonant Tunneling in Variably Spaced Finite Superlattices,” IEEE J. Quantum Electron., Vol. 32, p. 1093, 1996.
[69]S. S. Allen and S. L. Richardson, “Theoretical Investigation of Resonant Tunneling in Asymmetric Multibarrier Semiconductor Heterostructures in an Applied Constant Electric Field,” Phys. Rev. B, Vol. 50, pp. 11 639-11 670, 1994.
[70]K. F. Brennan and C. J. Summers, “Theory of Resonant Tunneling in a Variably Spaced Multiquantum Well Structure: An Airy Function Approach,” J. Appl. Phys., Vol. 61, p. 614, 1987.
[71]G. Bastard, “Superlattice Band Structure in the Envelope-Function approximation,” Phys. Rev. B, Vol. 24, p. 5693, 1981.
[72]M. O. Vassell, J. Lee, and H. F. Lockwood, “Multibarrier Tunneling in Ga1-XAlXAs/GaAs Heterostructures,” J. Appl. Phys., Vol. 54, p. 5206, 1983.
[73]F. Borondo and J. Sanchez-Dehesa, “Electronic Structure of a GaAs Quantum Well in an Electric Field,” Phys. Rev. B, Vol. 33, p. 8758, 1986.
[74]N. C. Kluksdahl, A. M. Kriman, D. K. Ferrt, and C. Ringhofer, “Self-Consistent Study of the Resonant-Tunneling Diode,” Phys. Rev. B, Vol. 39, p. 7720, 1989
[75]L. F. Luo, H. L. Evans, and E. S. Yang, “A Heterojnuction Bipolar Transistor with Separate Carrier Injection and Confinement,” IEEE Trans. Electron Devices, Vol. 36, p. 1844, 1989.
[76]M. E. Klausmeier-Brown, P. E. Dodd, M. S. Jundstrom, and M. R. Melloch, “Heteroface Bipolar Transistor Based on Bandgap Narrowing in p+-GaAs,” in IEEE Bipolar circuits Technology Meeting, Sept., p.33, 1988.
[77]X. Wu, Y. Q. Wang, L. F. Luo, and E. S. Yang, “An AlGaAs/GaAs Heterostructure-Emitter Bipolar Transistors,” IEEE Electron Devices Lett., Vol. 11, p. 264, 1990.
[78]W. C. Liu and W. S. Lour, “Influence of the Potential Spike on Heterostructure-Emitter Bipolar Transistor,” J. Appl. Phys., Vol. 69, p. 1063, 1991.
[79]W. C. Liu and W. S. Lour, “AlGaAs/GaAs Heterostructure-Emitter Bipolar Transistor (HEBT) Prepared by Molecular Beam Epitaxy,” Solid-State Electron, Vol. 34, p. 717, 1991.
[80]W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs Superlattice-Emitter Resonant-Tunneling Bipolar Transistor (SE-RTBT),” IEEE Trans. Electron Devices, Vol. 39, No. 10, p. 2214, 1992.
[81]Y. F. Yang, C. C. Hsu, E. Y. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs Heterojunction-Emitter Bipolar Transistors and Heterojunction Bipolar Transistor,” IEEE Trans. Electron Devices, Vol. 42, p. 1210, 1995.
[82]A. W. Hanson, S. A. Stockman, and G. E. Stillman, “Comparison of In0.5Ga0.5P/GaAs Single- and Double-Heterojunction Bipolar Transistors with a Carbon-Doped Base,” IEEE Trans. Electron Devices, Vol. 14, p. 25, 1993.
[83]Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface Recombination Current in InGaP/GaAs Heterojunction-Emitter Bipolar Transistor,” IEEE Trans. Electron Devices, Vol. 41, p. 643, 1994.
[84]M. T. Fresina, Q. J. Hartmann, and G. E. Stillman, “ Selective self-aligned emitter ledge formation for heterojunction bipolar transistors ”, IEEE Electron Device Lett., Vol.17, No.12, pp.555-556, 1996.
[85]M. Hafizi, “ Submicron, fully self-aligned HBT with an emitter geometry of 0.3mm ”, IEEE Electron Device Lett., Vol.18, No.7, pp.358-360, 1997.
[86]Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “ High-speed self-aligned InP/GaInAs double heterostructure bipolar transistor with high current driving capability ”, IEE Electronics Lett., Vol.24, No.20, pp.1293-1294, 1988.
[87]T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “ A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration ”, IEEE Photon. Technol. Lett., Vol. 5, No.1, pp. 1-3, 1993.
[88]T. Fresina, D. A. Ahmari, P. J. Maries, Q. J. Hartmann, M. Feng, and G. E. Stillman, “ High-speed, low noise InGaP/GaAs heterojunction bipolar transistors ”, IEEE Electron Device Lett., Vol.16, No.12, pp.540-541, 1995.
[89]M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, S. K. Wang, “ Experimental study of AlGaAs/GaAs HBT device design for power application ”, IEEE Electron Device Lett., Vol.12, No.11, pp.581-583, 1991.
[90]F. Li, G. Post, Y. Nissim, a. Falcou, C. Courbet, S. Sanchez, and A. Scavennec, “ A backside via holes etching technology for indium phosphide MMIC's ”, International conference on Microwave and Millimeter wave technology proceedings, pp.64-67, 2000.
[91]W. Liu, Handbook of III-V heterojunction bipolar transistors, Wiley Interscience, p.p. 762-772.
[92]N. Hayama, R. Fischer, and H. Morkoc, " Collector-emitter offset voltage in AlGaAs/GaAs heterojunction bipolar transistors ", Appl. Phys. Lett., Vol. 47, pp. 313-315, 1985.
[93]Shiou-Ying Cheng, Po-Hung Lin, Wei-Chou Wang, Jing-Yuh Chen, Wen-Chau Liu, and Wei Lin, “AlInAs/InGaAs Long-Period-Superlattice Resonant-Tunneling Transistor (LPSRTT),” IEE Electron. Lett., Vol.33, No.6, pp.534-535, 1997.
[94]Lih-Wen Laih, Shiou-Ying Cheng, Kun-Wei Lin, Po-Hung Lin, Jing-Yuh Chen, Wei-Chou Wang, and Wen-Chau Liu, “Investigation of Step-Doped-Channel Negative-Differential-Resistance Transistor”, Jpn. J. Appl. Phys., Vol.36, Pt.1, N0.5A, pp.2617-2620, 1997 .
[95]Wen-Chau Liu, Shiou-Ying Cheng, Jung-Hui Tsai, Po-Hung Lin, Jing-Yuh Chen, and Wei-Chou Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT)”, IEEE Electron Devcie Lett., vol.18, No.11, pp. 515-517, 1997.
[96]Wen-Chau Liu, Lih-Wen Laih, Shiou-Ying Cheng, Wen-Lung Chang Wei-Chou Wang, Jing-Yuh Chen, and Po-Hung Lin, "Multiple negative-differential-resistance (MNDR) phenomena of a metal-insulator-semiconductor-insulator-metal (MISIM) -like structure with step-compositioned InxGa1-xAs quantum wells", IEEE Trans. Electron Devices, Vol.45, No.2. pp. 373-379, 1998.
[97]Wei-Chou Wang, Shiou-Ying Cheng, Wen-Lung Chang, Hsi-Jen Pan, Yung-Hsin Shie and Wen-Chau Liu, “Investigation of InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT)”, Semicond. Sci. Technol., Vol.13, pp.630-633, 1998.
[98]Shiou-Ying Cheng, Hsi-Jen Pan, Yung-Hsin Shie, Jing-Yuh Chen, Wen-Lung Chang, Wei-Chou Wang, Po-Hung Lin, and Wen-Chau Liu, “Influence of d-Doping Sheet and Setback Layer on the Performance of InGaP/GaAs Heterojunction Bipolar Transistor”, Semicond. Sci. Technol., Vol.13, pp.1187-1192, 1998.
[99]Shiou-Ying Cheng, Wei-Chou Wang, Wen-Lung Chang, Jing-Yuh Chen, Hsi-Jen Pan, and Wen-Chau Liu, “A New InGaP/GaAs Double Delta-Doped Heterojunction Bipolar Transistor (D3HBT)”, Thin solid films, Vol. 345, pp. 270-272, 1999.
[100]Wei-Chou Wang, Jing-Yuh Chen, Hsi-Jen Pan, Shun-Ching Feng, Kuo-Hui Yu, and Wen-Chau Liu, “Study of InGaP/GaAs/InGaP Double d-Doped Heterojunction Bipolar Transistor”, Superlattice and Microstructures, Vol.26, pp. 23-33, 1999.
[101]Shiou-Ying Cheng, Wen-Chau Liu, Wen-Lung Chang, Hsi-Jen Pan, Wei-Chou Wang, Jing-Yuh Chen, Shun-Ching Feng, and Kuo-Hui Yu, “Observation of the Impulse-Like Negative-Differential-Resistance of Superlatticed Resonant-Tunneling Transistor”, Appl. Phys. Lett., Vol.75, No.1, pp.133-135, 1999.
[102]Wen-Chau Liu, Wei-Chou Wang, Jing-Yuh Chen, Hsi-Jen Pan, Shiou-Ying Cheng, Kong-Beng Thei, and Wen-Lung Chang, “A Novel InP/InAlGaAs Negative-Differential-Resistance Heterojunction Bipolar Transistor (NDR-HBT) with Interesting Topee-Shaped Current-Voltage Characteristics”, IEEE Electron Device Lett., Vol.20, pp.510-513, 1999.
[103]Wen-Chau Liu, Hsi-Jen Pan, Shiou-Ying Cheng, Wei-Chou Wang, Jing-Yuh Chen, Shun-Ching Feng, and Kuo-Hui Yu, “Applications of an InGaAlAs/InP continuous-conduction-band structure for ultra-low current operation transistors”, Appl. Phys. Lett., Vol.75, No.4, pp.572-574, 1999.
[104]Wen-Chau Liu, Shiou-Ying Cheng, Hsi-Jen Pan, Jing-Yuh Chen, Wei-Chou Wang, Shun-Chin Feng, and Kuo-Hui Yu, “A New In0.5Ga0.5P/GaAs Double Heterojunction Bipolar Transistor (DHBT) Prepared by MOCVD”, Journal De Physique, Vol. 9, pp. 1155-1161, 1999.
[105]Wen-Chau Liu, Hsi-Jen Pan, Shiou-Ying Cheng, Wei-Chou Wang, Jing-Yuh Chen, Shun-Chin Feng, and Kuo-Hui Yu, “MOCVD Grown d-Doped InGaP/GaAs Heterojunction Bipolar Transistor”, Journal De Physique, Vol. 9, pp. 1163-1169, 1999.
[106]Jing-Yuh Chen, Wei-Chou Wang, Hsi-Jen Pan, Shun-Ching Feng, and Kuo-Hui Yu, Shiou-Ying Cheng, Wen-Chau Liu, “Characteristics of InGaP/GaAs delta-doped heterojunction bipolar transistor”, J. Vac. Sci. & Technol., Vol. 18, pp751-756, 2000.
[107]Wen-Chau Liu, Wei-Chou Wang, Hsi-Jen Pan, Jing-Yuh Chen, Shiou-Ying Cheng, Kun-Wei Lin, Kuo-Hui Yu, Kong-Beng Thei, and Chin-Chuan Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, no. 8, pp. 1553-1559, 2000.
[108]Wei-Chou Wang, Hsi-Jen Pan, Kong-Beng Thei, Kun-Wei Lin, Kuo-Hui Yu, Chin-Chuan Cheng, Lih-Wen Laih, Shiou-Ying Cheng, and Wen-Chau Liu, “Observation of resonant tunneling effect and temperature dependent characteristics of an InP/InGaAs heterojunction bipolar transistor,” Semicond. Sci. Technol,vol. 15, pp.935-940, 2000.
[109]Wen-Chau Liu, Hsi-Jen Pan, Wei-Chou Wang, Kong-Beng Thei, Kun-Wei Lin, Kuo-Hui Yu, and Chin-Chuan Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, no.11, pp.524-527, 2000.
[110]Wei-Chou Wang, Hsi-Jen Pan, Kun-Wei Lin, Kuo-Hui Yu, Cheng-Zu Wu, Lih-Wen Laih, Shiou-Ying Cheng, and Wen-Chau Liu,“Investigation of InP/InGaAs Superlattice-Emitter Resonant Tunneling Bipolar Transistors (RTBT's),” Superlattices & Microstructures, vol. 29, no.2, pp.111-119, 2001.
[111]Wei-Chou Wang, Hsi-Jen Pan, Kuo-Hui Yu, Kun-Wei Lin, Jung-Hui Tsai, Shiou-Ying Cheng, and Wen-Chau Liu, “Study of the multiple-negative-differential-resistance (MNDR) switching behaviors based on heterojunction bipolar transistor (HBT) structures,” Superlattices & Microstructures, vol. 29, no.2, pp.133-145, 2001.
[112]Hsi-Jen Pan, Wei-Chou Wang, Kong-Beng Thei, Chin-Chuan Cheng, Kuo-Hui Yu, Kun-Wei Lin, Cheng-Zu Wu, and Wen-Chau Liu, “Investigation of Temperature-Dependent Performances of InP/In0.53Ga0.34Al0.13As Heterojunction Bipolar Transistors,” Semicond. Sci. Technol, vol. 15, pp. 1101-1106, 2000.
[113]Hsi-Jen Pan, Shun-Ching Feng, Wei-Chou Wang, Kun-Wei Lin, Kuo-Hui Yu, Cheng-Zu Wu, Lih-Wen Laih, and Wen-Chau Liu, “Investigation of an InGaP/GaAs Resonant-Tunneling Heterojunction Bipolar Transistor,” Solid-State Electron., (to be published).
[114]Wei-Chou Wang, Hsi-Jen Pan, Kun-Wei Lin, Kuo-Hui Yu, Chin-Chuan Cheng, Chih-Hung Yan, Shiou-Ying Cheng, and Wen-Chau Liu, “Characteristics of d-doped InP/InGaAlAs heterojunction bipolar transistors (HBT's),” Semicond. Sci. Technol, 2000, (to be published).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 43. 謝秉憲:「地方自治立法權界限之探討 」,立法院院聞,第26卷第9期,一九九二年一月。
2. 39. 謝秉憲:「地方自治立法權界限之探討」,立法院院聞,第26卷第9期,一九九八年十一月。
3. 35. 蔡茂寅:「地方自治立法權的界限」,月旦法學雜誌,第30期,一九九七年十一月。
4. 33. 蔡茂寅:「當前地方自治重大問題及其因應之道的探討-政黨輪替下的思考」,新世紀智庫論壇,第十期,二000年六月。
5. 32. 劉文祥:「精省後省法規定位之探討」,律師雜誌,2月號,第二四五期,二000年二月。
6. 31. 劉文仕:「自治法規的類別、定位與法律保留」,律師雜誌,1月號,第二四四期,二000年一月。
7. 29. 趙永茂:「憲法修改後地方自治法制化及中央與地方權限劃分問題之探討」,中山社會科學季刊,第七卷第二期,一九九二年六月。
8. 28. 黃錦堂:「德國聯邦體制之研究」,美歐月刊,第九卷第六期,一九九四年六月民國八十三年,六月。
9. 27. 黃錦堂:「當前地方自治的層級問題」,全國律師,2月號,一九九八年二月。
10. 25. 黃錦堂:「地方制度法重大問題之探討」,研考雙月刊,第23卷第3期,一九九九年六月民國八十八年,六月。
11. 23. 黃錦堂:「展望精省後地方自治法之發展」,新世紀智庫論壇,第五期,一九九九年三月。
12. 22. 黃錦堂:「修憲後地方自治法之發展」,律師雜誌,第二三一期一九九八年十二月。
13. 21. 黃鉦堤:「精省後地方自治團體立法行為之監督」,理論與政策,第48期,一九九八年十二月。
14. 20. 陳樹村:「地方自治法規與罪刑法定主義」,憲政時代,第二十三卷第二期,一九九六年十月。
15. 19. 陳樹村:「日本地方自治法規與國家法令之關係」,憲政時代,第23卷第4期,一九九八年四月。