( 您好!臺灣時間:2022/01/18 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Hui-Hung Lin
論文名稱(外文):The influence of boron diffusion on the optoelectronic properties of porous silicon
指導教授(外文):Shui-Jinn Wang
外文關鍵詞:porous silicon
  • 被引用被引用:2
  • 點閱點閱:460
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:0
Being with an indirect bandgap, conventional silicon-based material shows a very poor optical radiative efficiency and only luminescence outside visible range. Porous silicon (PS), which exhibits strong photoluminescence (PL) and electroluminescence (EL) in visible range, has opened new fields in Si-based optoelectronics. Generally, a well-passivated PS surface is essential for PL and EL, however, surface passivation will largely reduce the conductivity of the porous silicon layer, as a results, applications of PS on optoelectronic devices is limited. To achieve efficient PS EL devices, it is urgently needed to develop a technique to effectively reduce the resitivity of the PS layer while keeps the PL and EL performance unchanged.
In this thesis, PL and EL properties of PS were studied. The use of anodic oxidation as a post-treatment for PS layers to enhance the EL performance was investigated and discussed. To enhance the EL efficiency, two approaches to reduce PS resistivity were proposed. The first method is to utilize a low/high porosity PS structure. Such a PS structure can be obtained by adjusting process parameters such as current density, concentration of the etching solvent, and light illumination etc., during the anodization process. Based on our experiments, the top low porosity layer ( thick), as designed to have a porosity in the range of 20~35%, has shown providing much better ohmic contact at the metal/PS interface as compared to the one without such a top layer.
The second method is to employ boron doping for the PS layer. In experiment, wafer type boron nitride was used. After boron doping and removal of oxide, the PS layer with a decrease in the resistivity by about six orders of magnitude has been obtained. Experimental results based on SEM, ESCA, SIMS, current-voltage, and light emission of the PS samples were presented and analyzed.
第一章 導論
1-1多孔矽之簡介 18
1-2多孔矽於陽極氧化過程之電流-電壓特性 22
1-3多孔矽之形成 25
1-4多孔矽之量子模型 30
1-5多孔矽超晶格結構 32
1-6多孔矽選擇性蝕刻 33
1-7研究動機 34
第二章 多孔矽之製備
2-1實驗設備 35
2-2傳統多孔矽之製備 37
2-3多孔矽之蝕刻參數 40
2-4蝕刻時多孔矽電阻與時間的關係 54
2-5多層低/高孔隙率多孔矽結構之製備 59
第三章 多孔矽之發光機制
3-1多孔矽之發光機制 62
3-2量子侷限效應對光檢測效率之影響 64
3-3接面電阻之改善對光電效應的影響 69
3-4多孔矽光激發光現象 72
第四章 結果與討論
4-1多孔矽電激發光元件之光電特性 75
4-2硼擴散對多孔矽光電特性之影響 83
4-3歐姆接點 89
4-4 SIMS縱深分佈 93
4-5 ESCA元素分析 97
第五章 結論
5-1多孔矽之蝕刻機制 100
5-2多孔矽之光電效應 102
5-3未來研究及發展 103
第一章 參考資料
1.Uhir, “Electrolytic shapping of germanium and silicon,” Bell System Tech. J., vol. 35, pp. 333, (1956).
2.R.L.Smith and S.D.Gollins, “Porous Silicon Formation Mechanisms,” J. Appl. Phys., 71 (8) 15 April (1992).
3.國立海洋大學電機工程學系陳來全碩士論文, “利用多孔矽製作絕緣物質上的矽晶結構(SOI)及其特性研究,” 1995年.
4.Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi,J. “Formation and properties of porous silicon and its application,” J. Electrochem., Soc., Vol. 122, pp.1351, (1975).
5.Pickering, M.J.J.Beale, D.J.Robbins, P.J.Pearson and R.Greef, “Optical studies of the structure of porous films formed in p-type degenerate and non-degenerate silicon,” J. Phys. C: Solid State Phys., vol. 17, pp. 6535 (1984).
6.L. T. Canham. “Silicon Quantum Wire Array Fabrication by Electrochemical Dissolution of Wafers,” Applied Physics Letters., vol 57. Iss. 10. pp. 1046~1048 (1990).
7.V. Lehmann and U. Gosele, “Porous Silicon Formation: A Qutantum Wire Effect,” Applied Physics Letter., vol. 58 Iss. 8 pp. 856-858, (1991).
8.V. Lehmann and U. Gosele, “Evidence for Quantum confinement in Photoluminescence of Porous Si,” US. Patent., No. 751, 800, 29th Dec. (1991).
9.Axel Richter “Current-induced Light-Emission From a Porous Silicon Device,” IEEE electron device letter., vol. 12, Iss. 12 pp. 691-692 (1991).
10.G. Smestad and H. Ries, “Photovoltaic Response In Electrochemically Prepared Photoluminescent Porous Silicon,” Solar Energy Materials and Solar Cells., vol. 26, Iss. 4, pp 563~565 (1992).
11.G. Willeke, H. Nussbaumer, H. Bender, and E. Bucher, “A Simple and Effective Light Tapping Tecnique for Polycryalline Silicon Solar Cells,” Solar Energy Materials and Solar Cells., vol. 26, Iss. 4, pp. 345~346, (1992).
12.T. Taiercio, M. Dihan, E. Massone, A. M. Gue, B. Fraisse, A. Foucaran, “Visible-Light Emission-Spectra of Individual Microstructure of Porous Si,” Thin Solid Films., vol. 255, pp. 310 (1995).
13.D.J. Lockwoodm G.C. Aers, L.B. Allard, B. Bryskiewicz, S. Charbonneau, D.C. Houghton, J.P. McCaffrey, and A. Wang, “Optical properties of porous silicon,” Can. J. Phys., 70, 1184 (1992).
14.J.R. Proot, C.Delerue, and G. Allen, “Electronic-Structure and Optical-Properties of Silicon Crystallites Application to Porous Sillicon,” Applied Physic Letter., vol. 61, pp. 1948 (1992)
15.GANMING ZHAO,YIPING HUNG and MINHANG BAO, “SOI Structure Pressure Transducer Formed by Oxidized Porous Sillicon,” Sensors and Actuators., A21-A23, pp. 840 (1990)
16.ROLFE C.ANDERSON,RICHARD S.MULLER and CHARLES, “Investigations of Porous Sillicon for Vapor Sensing,” Sensors and Actuators., A21-A23, pp. 835 (1990)
17.T. Unagami and K. Kato, Trans. IEE Jap., vol. 98-A, No. 10, 15, (1978)
18.清華大學電機工程學系固態組劉曜彰碩士論文, “P+多孔矽結構控制法之研究,” (1999)
19.M. G. Berger, M. Thonissen, “Investigation and design of optical properties of porosity superlattices,” Thin Solid Films, vol. 255, pp. 313-316, (1995).
20.G. Vincent, “Optical-properties of porous silicon superlattice,” Appl. Phys. Lett., vol. 64, pp 2360-2367, (1994).
21.Kazuo Imai, “FIPOS (Full Isolation by Porous Oxidized Silicon) Technology and Its Application to LSI’s,” IEEE Transactions on Electron Devices, vol. ED-31, no. 3, pp. 297-302, March (1984).
22.K. Barla, “Characteristics of SOI CMOS Circuits Made in N/N+/N Oxidised Porous Silicon Structures,” Electronics Letters, vol. 22, no. 24, 20th November (1986).
23.A. El-Bahar, S. Stolyarova, and Y. Nemirovsky “N-type Porous silicon doping using phosphorous oxychloride (POCl3) ,” IEEE Electron Device Letters, vol. 21, no. 9, pp. 436-439, (2000).
24.C. Cadet, D. Deresmes, D. Vuillaume, and D. Stievenard “Inluence of surface defects on the electrical behavior of aluminum-porous silicon junctions,” Appl. Phys. Lett., vol. 64, pp 2827-2829, (1994).
第二章 參考資料
1.C. Y. Chang, S. M. SZE, ULSI Technology, pp. 93, (1996).
2.L. Jia and S. L. Zang, S. P. Wong and H. Wilson, S. K. Hark, Z. F. Liu and S. M. Cai, “Furthur Evidence for the Quantum-Confined Electrochemistry Model Of The Formation Mechanism of P(-) –Type Porous Silicon,” Applied Physics Letter vol. 69, Iss. 22, pp. 3399~3401, (1996).
3.V. Lehmann, “The Physics of Macropore Formation in Low Doped n-Type Silicon,” J. Electrochem. Soc., vol. 140, no. 10, (1993)。
4.George C. John* and Vijay A. Singh, “Diffusion-induced nucleation model for the formation of porous silicon,” Physical Review B., vol. 52, 125, (1995).
5.Hong Yan and Xiao Hu, “Interfacial dynamics and formation of porous structures,” Journal of Applied Physics, vol.73, (9), 4324, May (1993).
6.M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, “Microstructure and formation mechanism of porous silicon,” Applied Physics Letter, 46(1), 86, (1995).
7.R. P. Holmstrom, “Complete dielectric isolation by highly selective and self-stopping formation of oxidized porous silicon,” Appl. Phys. Lett., vol. 42(4), pp. 386-388, (1983).
8.國立成功大學電機工程學系黃鈺斌碩士論文,“多孔矽材料於微機電系統之應用,” (2000).

第三章 參考資料
1.S. M. Prokes, J. Appl. Phy. vol. 73, Iss. 1, (1993).
2.H. D. Fuchs, M. S. Brandt, phys. Rev. B, 48, pp. 8172 (1993).
3.T. Wadyama*. T. Arigane, K. Fujine, A. Hatta. “Real-time photoluminescence and Raman spectral study of porous Si during F2 and H2O exposure,” Journal of luminescence vol. 78, Iss. 2, pp. 111-116, (1998).
4.D. J. Worlford, B. A. Scott, J. A. Reimer and J. S., Brandley Physica 117B&118B, pp. 920, (1983).
5.S. M. Prokes, O. J. Glembochi, V. M. Bermudez and R. Kaplan, Physical Rev. B, 545, pp. 13788, (1992).
6.國立清華大學電機工程學系固態組劉曜彰碩士論文,“P+多孔矽結構控制法之研究”, (2000).
7.G. Mattei a,* , V. Valentini a , V. A. Yakovlev b “An FTIR study of porous silicon layers exposed to humid air with and without pyridine vapors at room temprature,” Surface Science 502~503 pp. 111-116, (1998).
9.L. T. Canham. “Silicon Quantum Wire Array Fabrication by Electrochemical Dissolution of Wafers,” Applied Physics Letters, vol. 57. Iss.10. pp. 1046~1048, (1990).
10.I. Suemune, N. Noguchi, M. Yamanishi, , “Photoirradiation Effect on Photoluminescence from Anodized Porous Silicon and Luminescence Mechanism,” Japan Journal Applied Physics., vol. 31, L494, (1992).
11.C. Y. Chan, A. Y. Cho, P. A. Grabinski, C. G. Bethea and B. F. Levine, “Modulated Barrier Photodiode: A New Majority-Carrier Photodetector,” Applied Physic Letter., pp. 340, (1981).
12.國立成功大學電機工程學系黃鈺斌碩士論文,“多孔矽材料於微機電系統之應用,” (2000).
13.國立成功大學電機工程學系鍾朝鈞碩士論文,“多層低/高孔隙率多孔矽結構在光電特性上的研究,” (1998).

第四章 參考資料
1.C. Cadet, D. Deresmes, D. Vuillaume, and D. Stievenard “Influence of surface defects on the electrical behavior of aluminum-porous silicon junctions,” Applied Physics Letters., vol. 21. Iss. 21. pp. 2827~2829, (1994).

第五章 參考資料
1.J. C. Owrutsky, J. K. Rice, S. Guha, P. Steiner, and W. Lang, “Ultrafast Absorption in Freestanding Porous Silicon Films,” Applied Physic Letter, vol. 67, Iss. 14, pp. 1966~1968, (1995).
2.S. M. Prokes, J. A. Freitas, Jr., and P. C. Searson, “Microluminescence Depth Profiles and Annealing Effects in Porous Silicon,” Applied Physic Letter. vol. 60, Iss. 26, pp. 3295~3297, (1992).
3.K. Inoue, O. Matsuda, K. Maehashi, H. Naashima, and K. Murase, “Spectral and Spatial Behavior of Raman-Scattering and Photoluminescence from Porous Silicon,” Japanese Journal of Applied Physic Part2-Letters vol. 31, Iss. 8A, L997~L1000, (1992).
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top