跳到主要內容

臺灣博碩士論文加值系統

(3.87.33.97) 您好!臺灣時間:2022/01/27 16:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林建良
研究生(外文):Chien-Lien Lin
論文名稱:以低壓有機金屬化學氣相沉積法成長變形晶格之異質接面緩衝層
論文名稱(外文):Metamorphic Growth of the Heterojunction Buffer Layers by Low Pressure Metal-Organic Chemical Vapor Deposition
指導教授:王永和王永和引用關係洪茂峰洪茂峰引用關係嚴考豐
指導教授(外文):Yeong-Her WangMau-Phon HoungKao-Feng Yarn
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:61
中文關鍵詞:變形晶格緩衝層
外文關鍵詞:Metamorphic Buffer Layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
磷化銦基板上的微波元件如HEMT或HBT比起砷化鎵基板上的微波元件有著許多優越的特性,包括不需使用含鋁材料,較低的複合速率(~103 cm/sec),砷化銦鎵能隙相對較小,磷化銦基板的高導熱係數 (0.7W-cm/K)以及適用於1.3及1.55微米的光電應用。然而,因為磷化銦基板價格昂貴,大尺寸基板製作困難以及其易脆的特性使得磷化銦基板上的微波元件在商業應用上較為不易。基於上述理由,我們以低壓有機金屬化學氣相沉積系統研發了一種新的成長方式在砷化鎵基板成長出高品質的變形晶格結構。
跟分子束磊晶系統比較起來,低壓有機金屬化學氣相沉積系統必須在較高溫及較高的成長速率下來成長異質接面,這些限制將導致在砷化鎵基板上成長變形晶格緩衝層易產生較不平整的表面。但是由於低壓有機金屬化學氣相沉積系統對於得到較厚的異質磊晶層而言具有較為優異的特性,因此吾人於本論文中所提出之成長方式將在一垂直式反應腔之德製商業低壓有機金屬化學氣相沉積系統中實現。.
在本論文中,為了克服以低壓有機金屬化學氣相沉積法成長變形晶格緩衝層所產生的不平整表面以及接面缺陷,吾人嘗試在各種不同成長條件下來成長變形晶格緩衝層,並以高倍光學顯微鏡、二次離子質譜儀、原子力顯微鏡及雙晶X光繞射儀來判定成長後的薄膜品質,予以分析討論之,以找出最佳的參數條件與成長溫度。
最後配合週邊環境的精確控制,成功地長出低介面缺陷,高晶格品質,與光滑如鏡的變形層表面。
InP-Based microwave devices have many advantages over GaAs-Based microwave devices, including the lack of aluminum, less surface recombination velocity(~103 cm/sec), small bandgap of InGaAs, high thermal conductivity of InP substrate (0.7 W-cm/K) and suitable for 1.3 and 1.55 μm optoelectronics application. However, the InP substrate has the disadvantages of higher cost, the lack of large wafer and frailness let the usage of the commercial application has more difficulty. For these season, we investigate a new method to directly grow the metamorphic structure by low pressure metalorganic chemical vapor deposition (LP-MOCVD).
In the LP-MOCVD system, it is necessary to grow epitaxial layers at higher temperature and with higher growth rates compared with MBE, which will give rise to rougher surfaces of the metamorphic buffer layers grown on GaAs substrates. Because of the LP-MOCVD system is a more practice growth tool for obtaining thick epitaxial layers, growth was carried out in a commercial LP-MOCVD system with an AIXTRON 2400 planetary (vertical) reactor.
In this work, we overcome the drawback of surface roughness of metamorphic buffer layer in the case of the LP-MOCVD technique and have grown metamorphic buffer layers with various thickness on misoriented GaAs (1 0 0) substrates by 10 degree towards (1 1 1) A. The grown films are characterized by optical microscopy, atomic force microscopy, secondary ion mass spectrometry, transmission electron microscopy and double-crystal X-ray diffraction investigation. We also analyze the surface morphology, which is dependent on growth temperature, group III and group V partial pressure, growth rate and V/III ratios. Finally, a mirror like, uniform surface and high crystal quality of the metamorphic buffer layer directly grown on a GaAs substrate can be achieved.
In order to compare the performance between the metamorphic microwave devices and lattice-matched microwave devices in the future, we also fabricate the InAlAs/InGaAs modulation-doped field effect transistors on InP substrates. We measure and analyze the data of the InAlAs/InGaAs HEMTs, so that in the future work it will be compared with the data of the metamorphic HEMTs.
1.Introduction1
1.1 Introduction to Metamorphic Devices1
1.2 Introduction to This Work2
2.Metal-Organic Chemical Vapor Deposition System5
2.1Introduction to Metal-Organic Chemical Vapor Deposition5
2.2MOCVD System8
2.3Source Molecules10
3.Direct Growth of High-Quality InxGa1-xAs Strained Layers on Misoriented GaAs Substrates16
3.1A New Method to Directly Grow InxGa1-xAs Strained Layers16
3.2Experimental17
3.2.1The Planetary Reactor and Material Sources17
3.2.2Growth Conditions18
3.3Results and Discussion19
3.3.1Grow the In-0.25Ga0.75As Layers on Misoriented GaAs Substrates…...20
3.3.2Grow the In-0.5Ga0.5As Layers on Misoriented GaAs Substrates21
3.4Summary22
4.Directly Grow InP Layers on GaAs Substrates 30
4.1Introduction to InP Layers Grown on GaAs Substrates30
4.2Growth Method31
4.3Analysis32
4.3.1Growth Temperature32
4.3.2V/III ratio33
4.3.3Measurement Data34
4.4Summary35
5.GaInAs/AlInAs HEMTs43
5.1 Introduction43
5.2 Device Structure43
5.3 Device Fabrication44
5.4 DC Characteristics46
5.5 Summary46
6.Conclusion and Future Work54
6.1Conclusion54
6.2Future Work55
6.2.1InAlAs/InGaAs Metamorphic HEMTs55
6.2.2InP-Based Heterojunction Bioplar Transistors55
6.2.3Metamorphic HBTs55
References58
[1] H. Wang, G. I. Ng, H. Zheng, Y. Z. Xiong, L. H. Chua, K. Yuan, K. Radhakrishnan and S. F. Yoon, “Demonstration of aluminum-free metamorphic InP/In0.53Ga0.47As/InP double heterojunction bipolar transistors on GaAs substrates”, Radhakrishnan and S. F. Yoon: IEEE Electron Device Lett. Vol.21, p.427 (2000).
[2] L. P. Ramberg, P. M. Enquist, Y. K. Chen, F. E. Najjar, L. F. Eastman, E. A. Fitzgerald and K. L. Kavanagh, “Lattice-strained heterojunction InGaAs/GaAs bipolar structures: Recombination properties and device performance”, J. Appl. Phys. 61 (1987) 1234.
[3] T. Mishima, M. Kudo, J. Kasai, K. Higuchi and T. Nakamura,” Annealing effects on lattice-strain–relaxed In0.5Al0.5As/In0.5Ga0.5As heterostructures grown on GaAs substrates”, J. Cryst. Growth 201 (1999) 271.
[4] K. Higuchi, M. kudo, M. Mori and T. Mishima, ”High-Performance In0.5Al0.5As/In0.5Ga0.5As High Electron Mobility Transistors on GaAs”. Jpn. J. Appl. Phys. 35 (1996) 5642.
[5] T. Mishima, M. Kudo, J. Kasai, K. Higuchi and T. Nakamura,” Annealing effects on lattice-strain–relaxed In0.5Al0.5As/In0.5Ga0.5As heterostructures grown on GaAs substrates”, J. Cryst. Growth 201 (1999) 271.
[6] G. B. Stringfellow, “Epitaxy”, Reports on Progress in Physics 45 469 (1982).
[7] H. M. Manasevit and W. I. Simposon, “The use of metalorganics in the preparation of semiconductor materials on sulating substrates: I. Epitaxial III-V Gallium compounds”, J. Electrochem. Soc. 12 156 (1968)
[8] H. M. Manasevit, “The use of metalorganics in the preparation of semiconductor materials: Growth on sulating substrates”, J. Cryst. Growth 13/14 306 (1972)
[9] H. Heinecke, K. Veuhoff, N. Pütz, M. Heyen, and P. Balk, “Kinetics of GaAs Growth by low pressure MO-CVD”, J. Electron. Mater. 13 815 (1984)
[10] TLV or threshold limit value is the maximum permissible exposure limit based on a time weighted average for an 8-hour day.
[11] N. V. Steere, ed., CRC Handbook of Laboratory Safety (Chemical Rubber Co., Cleveland, Ohio, 1967).
[12] O. Feron, M. Sugiyama, W. Asawamethapant, N. Futakuchi, Y. Fecurprier, Y. Nakano, Y. Shimogaki,” MOCVD of InGaAsP, InGaAs and InGaP over InP and GaAs substrates: distribution of composition and growth rate in a horizontal reactor”, Appl. Surf. Sci. 159 (2000) 318.
[13] S. P. Watkins, R. Ares, R. A. Masut, C. A. Tran and J. L. Brebner,” Photoluminescence of GaAs doped with dimethylaluminum methoxide during organometallic vapor phase epitaxy”, J. Appl. Phys. 75 (1994) 2460.
[14] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, K. L. Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures”, Appl. Phys. Lett. 60 (1992) 1129
[15] J. Katcki, J. Ratajczak, J. Adamczewska, F. Phillipp, N. Y. Jin-Phillipp, K. Reginski and M. Bugajski, “Selective electrochemical profiting of threading dislocations in mismatched InGaAs/GaAs heteroepitaxial systems”, Phys. Status Solidi 171 (1999) 275
[16] J. Boucart, F. Gaborit, C. Fortin, L. Goldstein, J. Jacquet, and K. Leifer, “Optimization of the metalmorphic growth of GaAs for long wavelength VCSELs”, J. Cryst. Growth 201, 1015 (1999).
[17] N.M. Margalit, J. piprek, S. Zhang, D.I. Babic, K.Streubel, R.P. Mirin, J.R. 111 Wesselmann, J.E.Bowers, and E.L. Hu, “64℃ Continuous-Wave Operation of 1.5-µm Vertical-Cavity Laser”, IEEE J. Sel. Top. Quantum Electron. 3, 359 (1997).
[18] L. Goldstein, C. Fortin, C. Starck, A. Plais, J. Jacquet, J.Boucart, A.Roche and C. 1Poussou, “GaAlAs/GaAs metamorphic Bragg mirror for long wavelength VCSELs”, Electron. Lett. 34, 268 (1998).
[19] Y. Mihashi, K. Goto, E. Ishimura, M. Miyashita, T. Shimura, H. Nishiguchi, T. Kimura, T. Shiba and E. Omura,” Long-Wavelength Receiver Optoelectronic Integrated Circuit on 3-Inch-Diameter GaAs Substrate Grown by InP-on-GaAs Heteroepitaxy”, Jpn. J. Appl. Phys. 33, 2599 (1994).
[20] Y. TaKano, T. Sasaki, Y. Nagaki, K. Kuwahara and S. Fuke, T. Imai, “Two-step growth of InP on GaAs substrates by metalorganic vapor phase epitaxy”, J. Cryst. Growth. 169, 621 (1996).
[21] Y. TaKano, M. Masuda, Y. Shirakawa, K. Kuwahara and S. Fuke, “Structural investigation of metalorganic chemical-vapor-deposition-grown InGaAs layers on misoriented GaAs substrates”, Jpn. J. Appl. Phys. 39, L901 (2000).
[22] K. Shinohara, Y. Yamashita, A. Endoh, K. Hikosaka, T. Matsui, and S. Hiyamizu, “Ultrahigh-speed pseudomorphic InGaAs/InAlAs HEMTs with 400-GHz cutoff frequency,” IEEE EDL, Vol. 22, pp.507-509 (2001)
[23] T. Enoki, Y. Ishii, and T. Tamamura, “T-gate process and delay time analysis for sub-1/4-µm-gate InAlAs/InGaAs HEMTs, “ IPRM’91, pp.371-376 (1991)
[24] T. Enoki, M. Tomizawa, Y. Umeda, and Y. Ishii, ”0.05-µm-gate InAlAs/InGaAs high electorn mobility transistor and reduction of its short-channel effects,” Jpn., J. Appl.Phys., Vol. 33, pp. 709-803 (1994)
[25] U. K. Mishra, A. S. Brown, L. M. Jelloian, M. Thompson, L. Nguyen, and S. Rosenbaum, “Novel high performance self-aligned 0.15 micron long T-gate AlInAs-GaInAs HEMTs”, IEDM Technical Digest, 1989
[26] U. K. Mishra, A. S. Brown, S. E. Rosenbaum, C. E. Hooper, M. W. Pierce, M. J. Delaney, S. Vaughn, and K. White, “Wicrowave performance of AlInAs-GaInAs HEMTs with 0.2µm and 0.1µm gate length”, IEEE Electron Device Lett., vol. EDL-9, no. 12, pp. 647-649, 1988
[27] K. Kenefick, ”Selective Etching Characteristics of Peroxide / Ammonium - Hydroxide Solutions For GaAs/Al0.15Ga0.85As/GaAs”, J. Electrochem. Soc. 129, 2380 (1982).
[28] C. Juang, K. J. Kuhn, and R. B. Darling, “Selective etching of GaAs and Al0.30Ga0.70As with citric acid/hydrogen peroxide solutions”, J. Vac. Sci. Technol., B8, 1122 (1990)
[29] B. Jalali, S. Pearton, Chapter 1, InP HBTs: Growth, Processing, and Applications.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top