跳到主要內容

臺灣博碩士論文加值系統

(54.224.133.198) 您好!臺灣時間:2022/01/27 05:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡慧詮
研究生(外文):Hui-Chuan Tsai
論文名稱:多變數系統其分散式控制與狀態迴授分解之數位再設計
論文名稱(外文):Digital redesign of the decentralized control and state-feedback decomposition for multivariable system
指導教授:蔡聖鴻
指導教授(外文):Jason Sheng-Hong Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:72
中文關鍵詞:解耦式控制分散式控制取樣資料系統數位再設計
外文關鍵詞:sampled-data systemsdigital redesigndecoupling controldecentralized control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在探討對於多變數系統之兩種追蹤器的設計方法。一種是分散式追蹤器設計方法,另一種是狀態迴授分解追蹤器設計方法。前者是利用多變數系統之主要子系統來設計分散式控制器使得分散式控制器可以保留集中式控制系統所想要的性能。並且分散式控制器的設計與硬體的實現也比較簡單。而後者是利用高增益方塊極點假設法來設計一個解耦式狀態迴授控制器使得系統輸出可以很快追上任何參考輸入。並且閉迴路系統可以被分解成幾個子系統,在分析上也比較容易。此外,當數位再設計系統像原本連續系統一樣性能時,我們可以利用數位再設計方法來減少控制訊號的暫態響應大小和對於實現控制器硬體的複雜度可以明顯地改善。
This thesis addresses two tracker design methodologies for the multivariable system. One is the decentralized tracker design method and the other is the state-feedback decomposed tracker design method. The former is utilizing the main subsystem of multivariable system to design the decentralized controller so that the decentralized controller preserves the desired performance of the centralized controlled system. The hardware and the controller design of the decentralized control system is more simplicity than the one of the centralized control system, also. The latter is utilizing the block-pole placement to develop a decoupling state-feedback controller so that the output of system can quickly track any arbitrary reference command signal. The closed-loop system can be decomposed into some parallel subsystems so that the analysis of the closed-loop system can be easily performed. Furthermore, we can apply the digital redesign method to above-mentioned methodologies so that the transient response of control signal can be greatly reduced and the complexity of hardware implementation of the controller can be significantly improved when the digitally redesigned system is as performance as the original analogously system.
中文摘要........I
Abstract .......II
List of Figures IV
Chapter 1. Introduction..................................................1-1
Chapter 2. Digital redesign of the decentralized control system
2.1 Introduction.......................................................2-1
2.2 Pairing of inputs and outputs......................................2-3
2.3 The augmented system...............................................2-4
2.4 Digital redesign...................................................2-5
2.5 State reconstruction...............................................2-10
2.6 An illustrative example............................................2-11
2.7 Summary............................................................2-19
Chapter 3. State-feedback decomposition of sampled-data control systems
3.1 Introduction.......................................................3-1
3.2 State-feedback decomposition of MIMO system
via distinct block-pole placement..................................3-2
3.3 State-feedback decomposition of MIMO system
via repeated block-pole placement..................................3-8
3.4 Digital redesign method............................................3-16
3.5 Determination of the right block poles via optimal control.........3-18
3.6 An illustrative example............................................3-20
3.7 Summary............................................................3-25
Chapter 4. Conclusions...................................................4-1
References
Acknowledgements
[1] Chen, T. and Francis, B. A., Optimal Sampled-Data Control Systems, Spring- Verlag,New York, 1995.
[2] Chiang, H. K., Tsai, J. S. H. and Sun, Y. Y., “Pole-placement designs via novel block canonical forms for multivariable control systems”, Journal of the Franklin Institute, vol. 329, no. 5, pp. 843-857, 1992.
[3] D’Azzo, J. J. and Houpis, C. H., Linear Control System Analysis and Design,
McGraw-Hill, New York, 1981.
[4] Dennis, J. E., Traub, J. F. and Weber, R. P., “The algebraic theory of matrix polynomials”, SIAM Journal on Numerical Analysis, vol. 13, pp. 831-845, 1976.
[5] Fujimoto, H., Hori, J. and Kawamura, A., “Perfect tracking control based on multirate feedforward control with generalized sampling periods”, IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 636-644, 2001.
[6] Fujimoto, H., Kawamura, A. and Tomizuka, M., “Generalized digital redesign method for linear feedback system based on n-delay control”, IEEE/ASME Transactions on Mechaton., vol. 4, pp. 101-109, 1999.
[7] Goodwin, G. C., Graebe, S.F. and Salgado, M. E., Control System Design, Prentice Hall, New Jersey, 2001.
[8] Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach”, IEEE Transactions on Circuits and Systems – I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, 2000.
[9] Houpis, C. H. and Lamont, G. B., Digital Control Systems, McGraw Hill, New York, 1985.
[10] Ieko, T., Ochi, Y. and Kanai, K., “Digital redesign of linear state-feedback law via principle of equivalent area”, Journal of Guidance, Control and Dynamics, vol. 24, pp. 857-859, 2001.
[11] Kailath, T., Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[12] Kuo, B. C., Digital Control Systems, Holt, Rinehart and Winston, NY, 1980.
[13] Lancaster, P., Lambda-matrices and vibrating systems, Pergamon Press, New York, 1966.
[14] Lewis, F. L. and Syrmos, V. L., Optimal Control, nd 2 edition, Wiley, New York, 1995.
[15] Mita, T., “Optimal digital feedback control system counting computation time of control laws”, IEEE Transactions on Automatic Control, vol. AC-30, pp. 542-549, 1985.
[16] Polites, M. E., “Ideal state reconstructor for deterministic digital control systems”, International Journal of Control, vol. 49, no. 6, pp. 2001-2011, 1989.
[17] Rafee, N., Chen, T. and Malik, O. P., “A technique for optimal digital redesign of analog controllers”, IEEE Transactions on Control Systems Technology, vol. 5, no. 1, pp. 89-99, 1997.
[18] Shieh, L. S., Chang, F. R. and Mcinnis, B. C., “The block partial fraction expansion of a matrix fraction description with repeated block poles”, IEEE Transactions on Automatic Control, vol. AC-31, no. 3, 1986.
[19] Shieh, L. S., Chen, G. C. and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems”, International Journal of Systems Science, vol. 23, no. 6. pp. 839-854, 1992.
[20] Shieh, L. S., Decrocq, B. B., Zhang, J. L., “Optimal digital redesign of cascaded analogue controllers”, Optimal Control Applications & Methods, vol. 12, pp. 205-219, 1991.
[21] Shieh, L. S. and Tsay, Y. T., “Algebra-geometric approach for the model reduction of large-scale multivariable systems”, Proc. IEE, vol. 131, part D., no. 1, pp. 23-36, 1984.
[22] Shieh, L. S. and Tsay, Y. T., “Block modal matrices and their applications to multivariable control systems”, Proc. IEE, vol. 129, part D., no. 2, pp. 41-48, 1982.
[23] Shieh, L. S. and Tsay, Y. T., “Transformations of a class of multivariable control systems to block companion forms”, IEEE Transactions on Automatic Control, vol.AC-27, pp.199-203, 1982.
[24] Shieh, L. S. and Tsay, Y. T., “Transformations of solvents and spectral factors of matrix polynomials and their applications”, International Journal of Control, vol. 34, no. 4, pp. 813-823, 1981.
[25] Shieh, L. S., Tsay, Y. T. and Yates, R. E., “State-feedback decomposition of multivariable systems via block-pole placement”, IEEE Transactions on Automatic Control, vol. AC-28, no. 8, pp. 850-852, 1983.
[26] Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “Design of PAM and PWM digital controllers for cascaded analog systems”, ISA Transactions, vol. 37, pp. 201-213,1998.
[27] Szita, G., Sanathanan, C.K., “A model matching approach for designing decentralized MIMO controllers”, Journal of the Franklin Institute, vol. 337, pp. 641-660, 2000.
[28] Tsay, Y. T. and Shieh, L. S., “Block decompositions and block modal controls of multivariable control systems”, Automatica, vol. 19, no. 1, pp. 29-40, 1983.
[29] Tsay, Y. T. and Shieh, L. S., “Irreducible divisors of λ-matrices and their applications to multivariable control systems”, International Journal of Control, vol. 37, no. 1, pp. 17-36, 1983.
[30] Tsay, Y. T., Shieh, L. S., Yates, R. E. and Barnett, S., “Block partial fraction expansion of a rational matrix”, Linear and Multilinear Algebra, vol. 11, pp.225-241, 1982.
[31] Yang, T. and Chua, L.O., “Control of chaos using sampled-data feedback control”, International Journal of Bifurcation and Chaos, vol. 8, pp. 2433-2438, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top