跳到主要內容

臺灣博碩士論文加值系統

(54.172.135.8) 您好!臺灣時間:2022/01/18 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家瑞
研究生(外文):Jia-Rui Lin
論文名稱:以數位再設計實現混沌系統的同步化追蹤控制
論文名稱(外文):Chaotic Synchronization Tracking Control via Digital Redesign
指導教授:蔡聖鴻
指導教授(外文):Jason S.H. Tsai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:90
中文關鍵詞:混沌系統同步化數位再設計非線性資料採樣控制
外文關鍵詞:nonlinear sampled-data controlsynchronizaitondigital redesignchaotic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本文提出三個研究的主題, ( i ) 數位再設計的方法應用於混沌系統的同步化追蹤控制中。基於李亞諾夫的方法,在連續時域中,單一狀態變數的控制器被推導出。於離散時間的控制中,一種有效的數位設計的技術被提出來達成同步化兩個對等的混沌系統。( ii ) 一種改進穩定度的分析的方法被提出。穩定度準則證明假如系統存在漸近穩定態的操作點 (平衡點),則所輸入的控制訊號所產生的軌跡仍然會趨近於漸近穩態。藉著使用最佳線性化模式,這種模式所導出實際的線性化模式於操作點中,而這些操作點所產生的解即為最佳線性化解於取樣的瞬間。( iii ) 非線性的混合模式系統具有輸入延遲的問題,以次佳化的數位再設計的方法將會被有效來控制。此外,以基因演算法則應用於數位控制器的參數調節於最佳化中。最後,數值模擬的效果則說明本文所提出的設計方法。
In this thesis, three issues are studied.
( i ) A digital redesign method is proposed for synchronizing chaotic systems. Based on the Lyapunov stability theory, a single-state variable feedback controller is derived in continuous-time domain. In discrete-time control, an effective digital redesign technique is proposed to achieve the state synchronization of two identical chaotic systems. ( ii ) An improved stability analysis for a nonlinear hybrid system is presented. The proposed stability criterion shows that if the system possesses a manifold of exponentially stable constant operating points (equilibria) corresponding to constant values of the input signal, then the input signal yields a trajectory that remains close to exponentially stable state. By using the optimal linearization method, it yields exact local linear models at operating states of interest and optimal local linear models in the neighborhood of operating states of interest. ( iii ) By using the sub-optimal digital redesign method, the nonlinear hybrid system with input time delay will be effective to control. Besides, the sub-optimal digital redesign technique uses the genetic algorithm for parameter tuning in optimization. Finally, numerical simulations demonstrate the efficacy via the proposed design methodologies in this thesis.
Table of Contents

ABSTRACT……………………………………………………………………Ⅱ
List of Figures…………………………………………………………………Ⅴ
Chapter

1 Introduction……………………………………………………………….1

2 Chaotic Synchronization Tracking Control via Digital
Redesign…………………………………………………………………….4

2.1 Introduction…………………………………………………………….5
2.2 Continuous-time design………………………………………………...6
2.3 Digital redesign method………………………………………………10
2.4 Sampled-data design for the chaotic system with simulation result….15
2.5 Conclusions……………………………...……………………………23

3 An Improved Stability Property of Nonlinear
Sampled-Data Systems………………………………………………24

3.1 Introduction…………………………………………………….…….25
3.2 System description and main result…………………………….…….26
3.3 Nonlinear systems with jumps………………………………….…….31
3.4 Main result revisited and numerical simulation………………………37
3.5 Concluding remarks….………………………………………………..41

4 Chaotic Synchronization Tracking Control via
Sub-Optimal Digital Redesign with Input Time
Delay by Genetic Algorithms Optimization Tuning…..……….43

4.1 Introduction………………………………..………….………………..44
4.2 Sub-optimal digital redesign method……..…………………….…...…45
4.3 Genetic algorithm for optimization tuning..………………………..….53
4.4 Main result and numerical simulation……..……………………..……55
4.5 Conclusions………………………………..……………………..……64

5 Conclusions………………………………….……………………..…….65

Appendix 1.……………………………………………………………....…...67

Appendix 2…………………………………………………………..….…….70

References……………………………………………………………….…....74
Reference

[1]Alander, J., An Indexed Bibliography of Genetic Algorithms: 1957-1993, Art of CAD Ltd., Espoo, Finland, 1994.
[2]Bernardo, M. D., “An adaptive approach to the control of chaos and synchronization of continuous-time chaotic systems”, International Journal Bifurcation Chaos, vol. 6, no. 3, pp. 557-568, 1996.
[3]Chao, P. W. and Tsai, J. S. H., “ Predictor control and suboptimal digital redesign for continuous-time system with delayed input”, IMA Journal of Mathematical Control and Information, vol. 6, pp. 377-390, 1999.
[4]Chen, G. and Dong, X., “ On feedback control of chaotic continuous-time systems,” IEEE Trans. on Circuits Systems, vol. 40, no. 9, pp. 591-601, 1993.
[5]Chen, T. and Francis, B., “ Input-output stability of sampled-data systems”, IEEE Trans. on Automat. Contr., vol. 36, pp. 50-58, 1991.
[6]Chen, G. and Dong, X., “Controlling Chua’s circuits”, Journal Circuits Systems Comput., vol. 3, no. 1, pp. 139-149, 1993.
[7]Cuomo, K. M., “ Synthesizing self-synchronizing chaotic array”, International Journal Bifurcation Chaos, vol. 4, no. 3, pp. 727-737, 1994.
[8]Cuomo, K. M. and Oppenheim, A. V., “ Circuit implementation of synchronizing chaos with applicationos to communication”, Phys. Rev. Lett., vol. 71, no. 1, pp. 65-68, 1993.
[9]Carroll, T. L., and Perora, L. M., “ Synchronizing a chaotic systems”, IEEE Trans. on Circuits Systems, vol. 38, pp. 453-456, 1991.
[10]Chen, Y. H. and Chou, M. Y., “ Continuous feedback approach for controlling chaos”, Phys. Rev. E, vol. 50, no. 3, pp. 2331-2334, 1994.
[11]Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.
[12]Dmitriev, A. S., Shirikov, M. and Starkov, S. O., “ Chaotic synchronization in ensembles of couple maps”, IEEE Trans. on Circuits and Systems-1:Fundamental Theory and Applications, vol. 44, no. 10, pp. 918-926, Oct. 1997.
[13]Desoer, C. A., “ Slowly varying discrete system ”, Electron. Lett., vol. 6, no. 11, pp. 339-340, 1970.
[14]Dressler, U. and Nitsche, G., “ Controlling chaos using time delay coordinates”, Phys. Rev. Lett., no. 1, pp. 1-4, 1992.
[15]Foegl, D. B., Evolutionary Computation: The Fossil Record, New Jersery: IEEE press., 1998.
[16]Foegl, D. B., “Using evolutionary programming for modeling: an ocean acoustic example ”, IEEE Journal on Oceanic Engineering, vol. 17, no. 4, pp. 333-340, 1992.
[17]Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA, 1989.
[18]Gorecki, H., Fuksa, S., Grabowski, P. and Korytowski, A., Analysis and Synthesis of Time Delay Systems, Wiley, New York, 1989.
[19]Gen, M. and Cheng, R., Genetic Algorithms and Engineering Design, Wiley, New York, 1997.
[20]Guo, S. M., Shieh, L. S., Chen, G. and Lin, C. F., “ Effective chaotic orbit tracker:a prediction-based digital redesign approach”, IEEE Trans. on Circuits and Systems-1: Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
[21]Huang, J. and Lin, C. F., “A stability property and its application to discrete-time nonlinear system control”, IEEE Trans. on Automat. Contr., vol. 39, pp. 2307-2311, 1994.
[22]Ioannou, P. A. and Sun, J., Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.
[23]Kramer, S. C. and Martin, R. C. Ⅳ., “Direct optimization of gain scheduled controllers via genetic algorithms”, Journal of Guidance, Control, and Dynamics, vol. 19, pp. 636-642, 1996.
[24]Krishnakumar, K. and Goldberg, D. E., “Control system optimization using genetic algorithm ”, Journal of Guidance, Control, and Dynamics, vol. 15, pp. 735-740, 1992.
[25]Kapitaniak, T., “ Continuous control and synchronization in chaotic systems, Chaos”, Solitons Fractals, vol. 6, no. 3, pp. 237-244, 1995.
[26]Khalil, H. K. and Kokotovic, P. V., “ On stability properties of nonlinear systems with slowly varying inputs”, IEEE Trans. on Automat. Contr., vol. 36, p. 229, 1991.
[27]Kelemen, M., “ A stability property”, IEEE Trans. on Automat. Contr., vol. 31, pp. 766-768, 1986.
[28]Lawrence, D. A., “ Stability analysis of nonlinear sampled-data systems”, in Proc. 36th IEEE Conf. Decision and Control, San Diego, CA, 1997, pp. 365-366.
[29]Lawrence, D. A. and Rugh, W. J., “On a stability theorem for nonlinear systems with slowly varying inputs”, IEEE Trans. on Automat. Contr., vol. 35, pp. 860-864, 1990.
[30]Lawrence, D. A. and Rugh, W. J., “ Gain scheduling dynamic linear controllers for a nonlinear plant”, Automatica, vol. 31, no. 3, pp. 381-390, 1995.
[31]Lawrence, D. A., “ A stability property of nonlinear sampled-data systems with slowly varying inputs”, IEEE Trans. on Automat. Contr., vol. 45, no. 3, Mar. 2000.
[32]Lewis, F. L., Applied Optimal control and Estimation:Digital Design and Implementation, Englewood Cliffs, NJ:Prentice-Hall, 1992.
[33]Liao, T. L. and Lin, S. H., “Adaptive control and synchronization of Lorenz systems”, Journal of the Franklin Institute, vol. 336, pp. 925-937, 1999.
[34]Man, K. F., Tang, K. S. and Wang, S. K., Genetic Algorithms: Concepts and Design, Springer-Verlag, London, 1999.
[35]Michalewicz, Z., Genetic Algorithm + Data structure =Evolution Programs, 3rd edition, Springer-Verlag, New York, 1996.
[36]Malek-Zavarei, M. and Jamshidi, M., Time-Delay Systems: Analysis, Optimization and Applications, North-Holland, Amsterdam, 1987.
[37]Ott, E., Grebogi, C. and Yorke, J. A., “ Controlling chaos”, Phys. Rev. Lett., vol. 64, no. 11, pp. 1196-1199, 1990.
[38]Ogorzalek, M. J., “ Taming chaos-Part I:synchronization”, IEEE Trans. on Circuits Systems, vol. 40, pp. 693-699, 1993.
[39]Oketami, N., Ushio, T. and Hirai, K., “ Decentralized control of chaos in nonlinear network”, Phys. Lett. A, vol. 198, pp. 327-332, 1995.
[40]Özdamar, L., “ A genetic algorithm approach to a general category project scheduling problem”, IEEE Trans. on Syst., Man, Cybern. C., vol. 29, pp. 44-59, Feb. 1999.
[41]Park, P., Moon Y. S. and Kwon, W. H., “ A stabilizing output-feedback linear quadratic control for pure input-delayed systems”, International Journal Control, vol. 72, pp. 385-391, 1999.
[42]Pyragas, K., “ Continuous control of chaos by self-controlling feedback”, Phys. Lett. A, vol. 170, pp. 421-428, 1992.
[43]Pecora, L. M. and Caroll, T. L., “ Synchronization in chaotic systems”, Phys. Rev. Lett., vol. 64, no. 8, pp. 821-824, 1990.
[44]Schwefel, H., Evolution and Optimum Seeking, Wiley, New York, 1995.
[45]Sheen, I. E., Tsai, J. S. H. and Shieh, L. S., “Optimal digital redesign of continuous-time system with input time delay and/or asynchronous sampling”, Journal Franklin Inst., vol. 335B, pp. 605-616, 1998.
[46]Sparrow, C., The Lorenz Equations :Bifurcation, Chaos and Strange Attractors, Springer, New York, 1982.
[47]Shieh, L. S., Chen, G. and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems”, International Journal Syst. Sci., vol. 23, pp. 839-854, 1992.
[48]Shieh, L. S., Wang, W. M. and Panicker, M. K. A., “ Design of PAM and PWM digital controllers for cascaded analog systems”, ISA-Trans., vol. 37, pp. 201-213, 1998.
[49]Shieh, L. S., Zhang, J. L. and Coleman, N. P., “ Optimal digital redesign of continuous-time controllers”, Computer Math. Appl., vol. 22, pp. 25-35, 1991.
[50]Shieh, L. S., Zhang, J. L. and Sunkel, J. W., “ A new approach to the digital redesign of continuous-time controllers”, Control-Theory Advanced Techniques, vol. 8, pp. 37-57, 1992.
[51]Shieh, L. S., Wang, W. M. and Tsai, J. S. H., “Optimal digital design of hybrid uncertain system using genetic algorithms”, IEE proceedings, Control Theory and Applications, vol. 146, pp. 119-130, 1999.
[52]Shieh, L. S., Zhao, X. M., Coleman, N. P. and Sunkel, J. W., “ Two-stage suboptimal discrete-time regulars for continuous-time stiff dynamic systems”, Applied Mathematics and Modelling, vol. 14, pp. 199-211, 1990.
[53]Shieh, L. S., Zhao, X. M. and Zhang, J. L., “ Locally optimal digital redesign of continuous-time systems”, IEEE Trans. on Industrial Electronics, vol. 36, pp. 511-515, 1989.
[54]Teixeira, M. C. M. and Zak, S. H., “ Stabilizing controller design for uncertain nonlinear systems using fuzzy models”, IEEE Trans. on Fuzzy Syst., vol. 7, pp. 133-142, 1999.
[55]Tsai, J. S. H., Shieh, L. L, and Sun, Y. Y., “ Observer-based hybrid control of sampled-data uncertain system with input time delay”, International Journal, vol. 28, no. 4, pp. 315-319, 1999.
[56]Tsai, J. S. H., Shieh, L. S. and Zhang, J. L., “ An improvement of the digital redesign method based on the block-pulse function approximation”, Circuits, Systems and Signal Processing, vol. 12, pp. 37-49, 1993.
[57]Tsai, J. S. H., Shieh, L. S., Zhang, J. L. and Coleman, N. P., “ Digital redesign of pseudo continuous-time suboptimal regulators for large-scale discrete systems”, Control-Theory and Advanced Technology, vol. 5, pp. 37-65, 1989.
[58]Wu, C., Yang, T. and Chua, L. O., “ On adaptive synchronization and control of nonlinear dynamical systems”, International Journal Bifurcation Chaos, vol. 6, no. 3, pp. 455-472, 1996.
[59]Wu, C. W. and Chua, L. O., “A unified framework for synchronization and control of dynamical systems”, International Journal Bifurcation Chaos, vol. 4, no. 4, pp. 979-998, 1994.
[60]Wang, Y., Singer, J. and Bau, H., “ Controlling chaos in a thermal convection loop”, Journal Fluid Mech., vol. 237, pp. 479-498, 1992.
[61]Yu, X., “ Controlling Lorenz chaos”, International Journal Syst. Sci., vol. 27, no. 4, pp. 355-359, 1996.
[62]Zeng, Y. and Singh, S. N., “ Adaptive control of chaos in Lorenz systems”, Dynamics Control, vol. 7, pp. 143-154, 1996.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 徐火炎,1993,<選舉競爭與政治分歧結構的變遷:國民黨與民進黨勢力的消長>,《人文及社會科學集刊》,第六卷,第一期,頁37-74。
2. 徐火炎,1992,<民主轉型過程中政黨的重組:台灣地區選民的民主價值取向、政黨偏好與黨派投票改變之研究>,《人文及社會科學集刊》,第五卷,第一期,頁213-262。
3. 胡佛、游盈隆,1984,<選民的黨派選擇:態度取向及個人背景的分析>,《政治學報》,第十二期,頁1-59。
4. 胡佛,1989,<選舉在變遷社會中的作用>,《中國論壇》,第二十九卷,第四期(340期),頁66-69。
5. 林嘉誠,1981,<問題重重的農會選舉>,《中國論壇》,第一三八期,頁29-31。
6. 吳重禮,1998,<亦敵亦友:論地方派系與國民黨候選人選擇過程的互動模式>,《私立中國文化大學政治學研究所學報》,第七期,頁177-204。
7. 吳乃德,1992,<國家認同與政黨支持:台灣政黨競爭的社會基礎 >,《中央研究院民族學研究所集刊》,第74期,頁101-130。
8. 何金銘,1995,<賄選現象與賄選效果:高雄市二屆立委選舉個案分析>,《政治科學論叢》,第六期,頁109-144。
9. 王業立,1998b,<選舉、民主化與地方派系>,《選舉研究》,第五卷,第一期,頁77-94。
10. 王振寰,1998,<地方派系的過去,現在和未來>,《國策專刊》,第一期,頁6-8。
11. 黃秀端,1996,<決定勝負的關鍵:候選人形象與能力在總統選舉中的重要性>,《選舉研究》,第3卷第1期,頁103-135。
12. 游清鑫,1995,<台灣政黨競爭及體系之變遷>,《政治學報》,第二十五期,台北:中國政治學會,頁181-206。
13. 游清鑫,1996,<選舉制度、選舉競爭與選舉策略:八十四年北市南區立委選舉策略之個案研究>,《選舉研究》,第三卷,第一期,頁137-177。
14. 趙永茂,1993,<台灣地方黑道形成背景及與選舉之關係>,《理論與政策》,第七卷,第二期(春季號),頁19-34。
15. 趙永茂,1994,<非都會區黑道與選舉之關係>,《理論與政策》,第八卷,第四期(秋季號),頁83-96。