跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林仲璋
研究生(外文):Jonq-Jang Lin
論文名稱:複數型卡爾曼濾波器於電力系統諧波動態估測之應用
論文名稱(外文):Application of Complex Kalman Filter for Dynamic State Estimation of Power System Harmonics
指導教授:黃世杰黃世杰引用關係
指導教授(外文):Shyh-Jier Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:86
中文關鍵詞:諧波含量估測複數型卡爾曼濾波器
外文關鍵詞:complex kalman filterharmonic estimation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
存在電力系統中之諧波,對於供電品質之影響甚鉅,因此亟需有一套準確之諧波量測技術,以協助擔任諧波改善之工具。目前於諧波量測方式上,常藉由使用快速傅立葉轉換,但在直接應用此快速傅立葉轉換作為諧波含量之分析時,卻往往因洩漏效應(Leakage Effect)、摺疊效應(Aliasing Effect)、柵欄效應(Picket-Fence Effect)的發生,致使錯估量測值之可能性大幅提高。因此如何有效改進量測準確度,已為諧波量測中亟待解決之問題。
本文提出兩種不同形式之複數型卡爾曼濾波器,並將其應用於電力系統中電壓及電流諧波含量之估測,期能改進傅立葉轉換所估測的準確度及增進卡爾曼濾波器應用的效能。但有鑑於實數卡爾曼濾波器在量測值發生驟變時,卻有無法即時追蹤之缺點,因此本文即針對此一缺點分別提出複數量測矩陣及複數狀態轉移矩陣來改善,並藉由數值模擬及實際電流諧波含量之估測。將所提方法與實數卡爾曼濾波器之測試結果予以比較,以驗證其可行性。
With the existence of harmonics, they are known notorious to downgrade the quality of supplying power. Hence, it becomes crucial to develop an efficient technique as an aid to decrease the effects of power system harmonics. Most approaches proposed nowadays were based on the fast Fourier transform method. Although such approaches were seen feasible for certain scenarios, the resultant leakage effects, aliasing effects and picket-fence effects were deemed side-effect nuisances, which may deteriorate the monitoring performance significantly.
To improve such drawbacks, two complex Kalman filters are proposed in this thesis with anticipation of tracking voltage and current harmonics at a higher performance. By use of the proposed complex Kalman filter-based method, even when the measurements encounter drastic variations, the method can help grasp the harmonic characteristics more effectively. In order to validate the proposed method, the simulated harmonic source was first used for the performance evaluation of frequency tracking. This is followed by the on-site experiments made on the arc furnace using the data recorded. From simulated results and experimental outcome, they help support the feasibility and practicality of the method.
第一章 緒論 1
1-1研究動機 1
1-2目的及方法 2
1-3內容大綱 3
第二章 傅立葉轉換於電力諧波量測之應用 4
2-1簡介 4
2-2諧波相關定義 4
2-3傅立葉轉換 7
2-4傅立葉轉換之限制 10
第三章 卡爾曼濾波器 16
3-1簡介 16
3-2卡爾曼濾波理論 17
3-3延伸型卡爾曼濾波器 26
3-4諧波估測模型 28
第四章 模擬估測 35
4-1簡介 35
4-2振幅估測 35
4-3相角估測 51
4-4頻率估測 57
4-5模擬估測結果與分析 67
4-6實際量測資料估測 70
4-7實測結果分析 81
第五章 結論及未來之研究方向 82
5-1結論 82
5-2未來之研究方向 82
參考文獻 84
[1]A. A. Girgis, W. B. Chang, and E. B. Makram, “A Digital Recursive Measurement Scheme for On-line Tracking of Power System Harmonics,” IEEE Transactions on Power Delivery, Vol. 6, No. 3, July 1991, pp. 1153-1160.
[2]F. J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proceedings of the IEEE, Vol. 66, No. 1, January 1978, pp. 51-83.
[3] A. S. Deb and R. E. Larson, “Dynamic Estimator for Tracking the State of Power System,” IEEE Transactions on Power Apparatus and Systems, Vol. PAS-89, No. 7, September/October 1970, pp. 1670-1678.
[4]J. S. Subjak and J. S. Mcquilkin, “Harmonic-Causes Effects Measurement and Analysis an Update”, IEEE Transaction on Industry Applications, Vol. 26, No. 6 November/December 1990, pp. 1034-1041.
[5]P. K. Dash, A. K. Pradhan, and G. Panda, “Frequency Estimation of Distorted Power System Signals Using Extended Complex Kalman Filter,” IEEE Transactions On Power Delivery, Vol. 14, No. 3, July 1999, pp. 761-766.
[6]H. M. Beides and G. T. Heydt, “Dynamic State Estimation Power System Harmonics Using Kalman Filter Methodology,” IEEE Transactions on Power Delivery, Vol. 6, No. 4, October 1991, pp. 1663-1669.
[7]I. Kamwa, R. Grondin, and D. Mcnabb, “On-Line Tracking of Changing Harmonics in Stressed Power Systems: Application to Hydro-Que`bec Network,” IEEE Transactions on Power Delivery, Vol. 11, No. 4, October 1996, pp. 2020-2026.
[8]A. M. Leite da Silva, M. B. Do Coutto Filho, and J. F. de Queriroz, “State Forecasting in Electric Power System,” IEE Proceedings -Generation Transmission and Distribution, Vol. 130 No. 5, September 1983, pp. 237-244.
[9] V. M. Moreno Saiz and J. B. Guadalupe, “Application of Kalman Filtering for Continuous Real-Time Tracking of Power System Harmonic,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 144, No. 1, January 1997, pp. 13-20.
[10] A. A. Girgis and L.W. Peterson, “Adaptive Estimation of Power System Frequency Deviation and Its Rate of Deviation for Calculating Sudden Power System Overloads,” IEEE Transactions on Power Delivery, Vol. 3, No. 2, April 1990, pp. 585-594.
[11] A. D. Phadke, J. S. Thorp, and M. G. Adamiak, “A New Measurement Technique for Tracking Voltage Phasors, Local System Frequency and Rate of Chance of Frequency,” IEEE Transactions on Power apparatus and system, Vol. PAS-102, No. 5, May 1983, pp. 1025-1038.
[12] P. J. Moore, R. D. Carranza, and A. T. Johns, “Model System on A New Numeric Method of Power System Frequency Measurement,” IEEE Transactions on Power Delivery, Vol. 11, No. 2, April 1996, pp. 696-700.
[13] T. Lobos, “Nonrecursive Methods for Real-Time Determination of Basic Waveforms of Voltages and Currents,” IEE Proceedings, Vol. 136, No. 6, November 1989, pp. 347-351.
[14] B. F. La scala, R. B. Bitmead, and B. G. Quinn, “An Extend Kalman Filter Frequency Tracker for High-Noise Environment,” IEEE Transactions on Signal Processing, Vol. 44, No. 2, February 1996, pp. 431-434.
[15]IEEE Std.519-1992, IEEE Recommended Practices and Requirements for Harmonic Control in Electric Power System, New York, 1993.
[16]L. C. Ludeman, Fundamental of Digital Signal Processing, Harper and Raw, New York, , U. S. A. 1986.
[17]A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Ins. New Jersey, 1989.
[18]C. P. Wrigh, Applied Measurement Engineering, Prentice-Hall, Inc. New Jersey, U. S. A. 1995.
[19]J. S. Subjak and J. S. Mcquikin, “Harmonic-Effects Measurements, and Analysis:An Update,” IEEE Transactions on Industry Applications, Vol. 26, No. 6, November/December 1990, pp. 1034-1042.
[20] F. M. Ham and A. A. Girgis, “Measurement of Power Frequency Fluctuations Using the FFT,” IEEE Transactions on Industrial Electronics, Vol. 32, No. 3, August 1985, pp. 199-204.
[21] A. A. Girgis and D. Hwang, “Optimal Estimation of Voltage Phasors and Frequency Deviations Using Linear and Non-linear Kalman Filtering. Theory and Limitations,” IEEE Transactions on Power Delivery Apparatus and Systems, Vol. 103, No. 10, October 1984, pp. 2943-2949.
[22] P. K. Dash, A. K. Pradhan, and G. Panda, “Frequency Estimation of Distorted Power System Signals Using Extended Complex Kalman Filter,” IEEE Transactions on Power Delivery, Vol. 44, No. 3, November 1999, pp. 761-766.
[23]R. G. Brown and P. Y. C. Hwang, Introduction to Random Signals and Application Kalman Filtering, Second Edition, John Wiley & Sons Inc, 1992.
[24]S. Osowski, “Neural Network for Estimation of Harmonics Components in Power System,” IEE Proceedings, Vol. 139, No. 2, 1992, pp. 129-135.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top