跳到主要內容

臺灣博碩士論文加值系統

(54.225.48.56) 您好!臺灣時間:2022/01/19 21:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林秉毅
研究生(外文):Ping-Yi Lin
論文名稱:市電並聯型感應發電機之沼氣發電系統應用分析
論文名稱(外文):Analyses of Grid-Connected Induction Generators for a Biogas Generation System
指導教授:王醴
指導教授(外文):Li Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:206
中文關鍵詞:沼氣發電市電並聯型感應發電機雙機系統
外文關鍵詞:double machine systembiogas generation systemgrid-connected induction generators
相關次數:
  • 被引用被引用:3
  • 點閱點閱:372
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究市電並聯型感應發電機應用於沼氣發電系統之特性,文中的發電機轉軸加入了沼氣引擎及調速機之數學模型作為發電機之轉速控制系統。本文中分別使用了市電併聯型感應發電機之qd0與abc模型以探討三相平衡與三相不平衡情況下之感應機、自激電容器與市電匯流排端故障及參數變動之動態特性。在穩態分析方面,則針對感應機之兩種工作模式與市電匯流排端電壓改變之情況來做一詳細研究。由系統實際量測值與模擬結果之對照,可知本系統所推導之模型與感應機之內部參數獲得是可行的。最後,則將單機系統擴展至雙機系統來做上述相關之分析。
This thesis investigates the performance of grid-connected induction generators (GCIGs) of a biogas generation system. The biogas engine and governor models are employed to simulate the speed control system of GCIGs. The induction machine’s qd0 and abc models are respectively employed to study the system under three-phase balanced and unbalanced conditions. The characteristics of the induction machine, capacitor, and utility grid bus under faulted conditions and parameter variations are clearly examined. Two operating modes of GCIGs and the variation of the utility grid voltage under steady-state conditions are explored. Both field measured results and simulated results are compared to validate the feasibility of the proposed system model and machine parameters. Finally, characteristics of two GCIGs connected to the same utility grid are also investigated.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
符號說明 XV
第一章 緒論 1
1-1 研究動機 1
1-2 相關文獻回顧 2
1-3 研究內容概述 4
第二章 感應發電機之原理與特性分析 6
2-1 前言 6
2-2 感應發電機之電容自激現象 6
2-3 市電並聯型感應發電機之架構 9
2-4 感應發電機之參數獲得 12
第三章 系統數學模型 19
3-1 前言 19
3-2 感應發電機平衡之動態模型 19
3-3 感應發電機三相不平衡之動態模型 22
3-4 沼氣引擎及調速機模型 26
3-5 實測值與模擬值之穩態與起動暫態比較 27
3-5-1 穩態結果之比較 27
3-5-2 感應機起動暫態電流之比較 29
第四章 感應發電機在三相平衡下之分析 33
4-1 前言 33
4-2 起動暫態與特徵值分析 33
4-3 非線性動態模擬與特徵值分析 41
4-3-1 轉速改變之暫態響應 41
4-3-2 自激電容切換之暫態響應 46
4-3-3 匯流排電壓改變之暫態響應 52
4-3-4 廠內匯流排電壓發生三相短路之暫態
響應 58
4-3-5 廠內匯流排電壓發生瞬間開路之暫態
響應 64
4-3-6 感應機端發生三相短路之暫態響應 70
4-3-7 感應機端發生瞬間開路之暫態響應 76
4-3-8 感應機變為自激發電之暫態響應 82
4-4 穩態工作點與特徵值分析 89
第五章 感應發電機在三相不平衡下之分析 106
5-1 前言 106
5-2 非線性動態模擬分析 106
5-2-1 電容單相切離之暫態響應 106
5-2-2 匯流排單相短路之暫態響應 110
5-2-3 匯流排單相開路之暫態響應 114
5-2-4 感應機端單相短路之暫態響應 118
5-2-5 感應機端單相開路之暫態響應 122
5-2-6 感應機端單相欠相之暫態響應 126
5-3 不平衡因數分析 130
5-3-1 改變匯流排電壓之不平衡分析 131
5-3-2 改變自激電容值之不平衡分析 134
5-3-3 改變傳輸線電阻之不平衡分析 138
5-3-4 改變傳輸線電抗之不平衡分析 142
第六章 雙機系統分析 147
6-1 前言 147
6-2 三相平衡系統分析 147
6-2-1 雙機起動時之暫態響應與穩定度分析
148
6-2-2 1號感應機轉速變動時之暫態響應與
穩定度分析 153
6-2-3 1號感應機端發生三相短路故障時之
暫態響應與穩定度分析 158
6-2-4 1號感應機端發生三相開路故障時之
暫態響應與穩定度分析 163
6-2-5 廠內匯流排發生三相短路故障時之暫
態響應與穩定度分析 168
6-2-6 雙機系統之穩態值 173
6-3 三相不平衡系統分析 175
6-3-1 1號電容組單相切離之暫態響應 175
6-3-2 匯流排單相短路之暫態響應 180
6-3-3 1號感應機端單相短路之暫態響應 184
6-3-4 1號感應機端單相開路之暫態響應 188
6-3-5 1號感應機端單相欠相之暫態響應 192
6-3-6 雙機系統異相序連結之起動暫態響
應 196
第七章 結論 200
參考文獻 204
作者自述 206
[1] M. A. Redfem, O. Usta, and G. Fileding, “Protection against loss of utility grid supply for a dispersed storage and generating unit,” IEEE Trans. Power Delivery, vol. 8, no. 3, July 1993, pp. 948-954.
[2] C. S. Demoulias and P. S. Dokopoulos, “Transient behaviour and self-excitation of wind-driven induction generator after its disconnection from power grid,” IEEE Trans. Energy Conversion, vol. 5, no. 2, 1990, pp. 272-278.
[3] M. A. Ouhrouche, X. D. Do, Q. M. Le, and R. Chine, “EMTP based simulation of a self-excited induction generator after its disconnection from the grid,” IEEE Trans. Energy Conversion, vol. 13, no. 1, March 1998, pp. 7-14.
[4] R. M. G. Castro, A. E. Gomes, and J. M. Ferreira de Jesus, “Transient behaviour of an induction generator in small hydro plants,” Mediterranean Electrotechnical Conference Proceedings, Integrating Research, Industry and Education in Energy and Communication Engineering, MELECON ’89, Lisbon, Portugal, 1989, pp. 79-82.
[5] Z. Saad-Saoud and N. Jenkins, “Models for predicting flicker induced by large wind turbines,” IEEE Trans. Energy Conversion, vol. 14, no. 3, September 1999, pp. 743-748.
[6] S. S. Murthy, C. S. Jha, and P. S. Nagendra Rao, “Analysis of grid connected induction generators driven by hydro/wind turbines under realistic system constraints,” IEEE Trans. Energy Conversion, vol. 5, no. 1, March 1990, pp. 1-7.
[7] L. Tang and R. Zavadil, “Shunt capacitor failures due to windfarm induction generator self-excitation phenomenon,” IEEE Trans. Energy Conversion, vol. 8, no. 3, September 1993, pp. 513-519.
[8] S. D. Rubira and M. D. McCulloch, “Control method comparison of double fed wind generators connected to the grid by asymmetric transmission lines,” IEEE Trans. Industry Applications, vol. 36, no. 4, July/August 2000, pp. 986-991.
[9] M. A. Redferm, O. Usta, and G. Fielding, “Protection against loss of utility grid supply for a dispersed storage and generating unit,” IEEE Trans. Power Delivery, vol. 8, no. 3, July 1993, pp. 948-954.
[10] E. L. Owen and G. R. Griffith, “Induction generators for Petroleum and chemical plants,” IEEE Trans. Industry Applications, vol. 19, no. 6, November/December 1983, pp. 1003-1013.
[11] J. R. Parsons, Jr., “Cogeneration application of induction generators,” IEEE Trans. Industry Applications, vol. 20, no. 3, May/June 1984, pp. 497-503.
[12] A. H. Ghorashi, S. S. Murthy, B. P. Singh, and B. Singh, “Analysis of wind driven grid connected induction generators under unbalanced grid conditions,” IEEE Trans. Energy Conversion, vol. 9, no. 2, June 1994, pp. 217-223.
[13] A. K. Tandon, S. S. Murthy, and G. J. Berg, “Steady-state analysis of capacitor self-excited induction generators,” IEEE Trans. Power Apparatus and Systems, vol. 103, 1984, pp. 612-618.
[14] H. A. Breedlove and J. R. Harbaugh, “Protection of the induction motor/generator,” IEEE Trans. Industry Applications, vol. 19, no. 6, November/December 1983, pp. 958-961.
[15] L. J. Powell, “An industrial view of utility cogeneration protection requirements,” IEEE Trans. Industry Applications, vol. 24, no. 1, January/February 1988, pp. 75-81.
[16] S. K. Jain, J. D. Sharma and S. P. Singh, “Transient performance of three-phase self-excited induction generator during balanced and unbalanced faults,” IEE Proceedings, Generation Transmission and Distribution, vol. 149, no. 1, January 2002, pp. 50-57.
[17] K. E. Yeager and J. R. Willis, “Modeling of emergency diesel generators in an 800 megawatt nuclear power plant,” IEEE Trans. Energy Conversion, Vol. 8, No. 3, September 1993, pp. 433-441.
[18] O. J. M. Smith, “Three-phase induction generator for single phase line,” IEEE Trans. Energy Conversion, vol. 2, no. 3, September 1987, pp. 382-387.
[19] E. N. Hinrichsen and P. J. Nolan, “Dynamics and stability of wind turbine generators,” IEEE Trans. Power Apparatus and Systems, vol. 101, no. 8, August 1982, pp. 2640-2648.
[20] F. P. de Mello and J. W. Feltes, L. N. Hannett, and J. C. White, “Application of induction generator in power systems,” IEEE Trans. Power Apparatus and Systems, vol. 101, no. 9, 1982, pp. 3385-3393.
[21] 楊雅峰,市電並聯型感應發電機之平衡分析,國立成功大學電機研究所89學年度碩士論文,90年6月。
[22] 王京明、錢玉蘭、李鈞元,再生能源發電效益經濟評估,中華經濟研究院,86年5月,第97頁。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top