跳到主要內容

臺灣博碩士論文加值系統

(3.81.172.77) 您好!臺灣時間:2022/01/21 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝富怡
研究生(外文):Fu-Yi Hsieh
論文名稱:表面聲波波傳理論之研究及其在液體感測器上之應用
論文名稱(外文):A Study on the Theory of the Surface Acoustic Wave and its Application on Liquid Sensors
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-Yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
論文頁數:111
中文關鍵詞:液體感測器表面聲波
外文關鍵詞:SAWLiquid Sensor
相關次數:
  • 被引用被引用:5
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
表面聲波在彈性體上傳遞時大部分的能量皆集中在表面附近,因此其波傳特性不僅和聲波所在介質有關,也受彈性體表面邊界條件影響。表面聲波液體感測器即是利用此原理,藉由分析液體負載對波速、波傳衰減常數等波傳特性造成的變化來求得未知液體的各項特性參數。
本論文針對石英(Quartz)、鈮酸鋰(LiNbO3)及鉭酸鋰(LiTaO3)等常用單晶壓電材料的表面聲波波傳特性進行探討,將理論推導以數值分析方法配合電腦程式的撰寫求得各材料在不同切面、不同傳播方向時聲波之波速、機電耦合常數、機械位移量及電位分布;進一步並探討液體負載的相對介電常數、導電度、密度及黏滯度等各項參數對表面聲波波傳特性的影響。
本論文同時採用具有Rayleigh SAW型態的128∘YX LiNbO3、ST-X Quartz及具有SH Leaky SAW型態的36∘YX LiTaO3和SSBW型態的ST-Y Quartz為基板製作SAW感測器元件,利用這些元件進行液體導電度及黏滯度之感測以比較不同波傳型態作為液體感測器之優缺點。實驗發現Rayleigh SAW在壓電基板與液體介面之能量衰減太大並不適合用作液體感測;具有SH Leaky SAW型態的36∘YX LiTaO3對導電度及黏滯度均有不錯的辨識度;SSBW型態的ST-Y Quartz對液體導電度並無鑑別能力,但若在此元件上再成長一層氧化鋅(ZnO)薄膜使波傳型態變為Love wave時,則對於液體導電度亦有相當好的辨識度,且能量衰減趨近於零。
The surface acoustic wave (SAW) is a wave that propagates with its energy concentrated on the surface of an elastic substrate. Therefore, the propagation characteristics of the wave depend not only on the transmission media but the boundary condition of elastic surface. By detecting the variations of phase velocity and propagation attenuation constant, a SAW sensor can be realized. And further, we can obtain the acousto-electric parameters of the unknown liquid by analyzing the relationship between these parameters and SAW propagation characteristics.
In this dissertation, the propagation characteristics of Rayleigh SAW for common single crystal piezoelectric materials of different cutting axis and various propagation directions such as Quartz, LiNbO3 and LiTaO3 are completely discussed. First of all, wave propagation theory and numerical analysis techniques are applied to obtain the phase velocity, mechanical displacements, potential, electromechanical coupling factor and attenuation constant. Then, the change of wave propagation characteristics due to relative dielectric constant, conductivity, density and viscosity of the liquid loaded on the SAW sensor is also discussed.
In this study, we choose several different materials for SAW sensor application, they are (1) 128º YX LiNbO3、ST-X Quartz, which support Rayleigh SAW, (2) 36º YX LiTaO3, which support SH Leaky SAW, and (3)ST-Y Quartz, which support SSBW. Experimental results show that Rayleigh SAW is not suitable for liquid sensor application for its large attenuation between liquid/substrate interfaces. SH Leaky SAW is good for conductivity and viscosity identification. SSBW can not tell any difference of the conductivity in different liquid. Finally, Love mode sensor with ZnO film on the ST-Y Quartz substrate was introduced and show good ability for liquid conductivity sensing, and the attenuation due to liquid loading is very tiny.
中文摘要 I
英文摘要 III
圖表目錄 V
第一章緒論 1
第二章表面聲波波傳理論 3
2.1 壓電特性 3
2.1.1 正逆壓電效應... 3
2.1.2 壓電材料及其應用 4
2.2 叉指換能器(IDT) ..5
2.3 表面聲波波傳理論 6
2.3.1 Christoffel’s 波動方程式 6
2.3.2 座標系統及座標轉換 9
2.3.3 無液體負載下Christoffel’s 波動方程式之解及其邊界條件 10
2.3.4 液體負載下Christoffel’s 波動方程式之解及其邊界條件 17
2.3.5 多層壓電薄膜材料之Christoffel’s 波動方程式之解及其邊界條件 23
第三章程式模擬結果與討論 26
3.1 未加液體負載之表面聲波波傳特性 26
3.2 液體負載之聲電係數對表面聲波波傳特性的影響 30
第四章元件製作及量測結果討論 33
4.1 壓電基板 33
4.2 光罩設計 33
4.3 元件製成 34
4.4 量測系統 35
4.5 待測溶液 35
4.6 實驗結果與討論 35
第五章結論 41
參考文獻 44
附表與附圖 46
[1]R. M. White and R. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic Waves,” Applied Physics Letters, Vol.7, No.12, p.314-316, 1965
[2]H. Goldstein, “Classical Mechanics,” New York Addison-Wisely, 1950
[3]C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications,” Academic Press, 1998
[4]B. A. Auld, “Acoustic Fields and Waves in Solids,” vol.1&2, Krieger, 1990
[5]D. P. Morgan, “Surface-Wave Devices for Signal Processing,” Elsevier, 1985
[6]J. D. Achenbach, “Wave Propagation in Elastic Solids,” North-Hlooand Series in Applied Mathematics and Mechanics, Vol. 16
[7]J. J. Campbell and W. R. Jones, “A method of estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves,” IEEE Trans.Sonics and Ultrasonics, vol. SU-15, pp.209-217, October 1968
[8]J. J. Campbell and W. R. Jones, “Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium,” IEEE Trans. Sonics and Ultrasonics, vol. SU-17, pp.71-76, October 1970
[9]G. Kovacs, M. Anchorn, H. E. Engan, G. Visintini and C. C. W. Ruppel,“Improved material constants for LiNbO3 and LiTaO3,” IEEE Ultrasonics Symposium, p.435-438, 1990
[10]Michio Kadota, “Surface acoustic wave characteristics of a ZnO/Quartz substrate structure having a large electromechanical coupling factor and a small temperature coefficient,” J. J. A. P., Vol. 36, pp. 3076-3080, May 1997
[11]C. C. Tseng, “Elastic surface waves on free surface and metallized surface of CdS, ZnO, and PZT-4,” J. Appl. Phys. 38, No. 11, p.4281-4283, October 1967
[12]T. C. Lim, G. W. Farnell, “Character of pseudo surface waves on anisotropic crystals,” Journal of the Acoustical Society of America, p.845-851, 1968
[13]T. C. Lim, G. W. Farnell, “Search for forbidden directions of elastic surface wave propagation in anisotropic crystals,” J. Appl. Phys. 39, No.9, p.4319-4325, 1968
[14]V. P. Plesskii, Yu. A. Ten, “Influence of viscous loading of the surface of an acoustic line on the propagation of shear subsurface waves,” Sov. Phys. Acoust. 32(2), p.121-124, March-April 1986
[15]H. Meier, P. Russer, “Analysis of leaky surface acoustic waves on LiTaO3 substrate,” IEEE Ultrasonics Symposium, p.378-383, 1992
[16]H. Meier, P. Russer, “Propagation characteristic of leaky surface acoustic waves for two thin metal layers on LiTaO3 substrate,” IEEE Ultrasonics Symposium, p.359-362, 1991
[17]G. W. Farnell, “Properties of elastic surface wave,” Physical Acoustics, vol. 6, 1970
[18]Jun Kondoh, Showko Shiokawa, “A liquid sensor based on a shear horizontal SAW device,” Electronics and Communications in Japan, Part 2, vol. 76, No. 2, 1993
[19]Jun Kondoh, Showko Shiokawa, “Shear surface acoustic wave liquid sensor based on acoustoelectric interaction,” Electronics and Communications in Japan, Part 2, vol. 78, No. 1, 1995
[20]Showko Shiokawa, Jun Kondoh, “Surface Acoustic Wave microsensors,”Electronics and Communications in Japan, Part 2, vol. 79, No. 3, 1996
[21]E. L. Adler, G.W. Farnell, J. Slaboszewicz and C. K. Jen, “Interactive PC software for SAW propagation in anisotropic multilayers,” IEEE Ultrasonics Symposium, p.103-107, 1988
[22]W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw,“Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-17, No. 11, p.856-864, 1969
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 尤克強(1999),「知識創造價值」,遠見雜誌,頁108-110。
2. 王景翰、李美玲(2001),「e時代的網路化知識管理」,管理雜誌,頁98-100+102。
3. 白景文(2000),「知識管理創造智價企業」,管理雜誌,頁66-68。
4. 江玫君(2001),「人力資源管理與組織績效之相關研究」,嶺東學報,頁219-237。
5. 何飛鵬(2000),「知識管理的第一步」,商業周刊,頁17。
6. 吳行健(2000),「知識管理創造企業新價值」,管理雜誌,頁84-86。
7. 李允傑(1999),「公部門之績效評估」,人事月刊,第29卷第4期,頁4-14。
8. 李燈祥(1994),「淺談如何有效實施專業化的學校行政」,竹市文教,頁37-39。
9. 林公孚(2001),「組織處理知識管理之道」,品質管制月刊,頁26-28。
10. 洪明洲(2000),「軟體與知識管理」,電腦世界,頁55-59。
11. 張秉中(2000),「藏私文化已過時知識管理重分享」,統領雜誌,頁72-74。
12. 楊艾俐(1998),「張忠謀的經營馬拉松-培養世界級企業人」,天下雜誌,頁80-84+86。
13. 楊其清(2001),「結合網路與知識管理的優勢」,管理雜誌,頁104-107。
14. 廖肇弘(2000),「善用知識管理系統創造企業智慧」,管理雜誌,頁38-40。
15. 賴彥儒(2001),「資訊科技起飛知識管理--以臺積電為例」,管理雜誌,頁140-143。