跳到主要內容

臺灣博碩士論文加值系統

(75.101.211.110) 您好!臺灣時間:2022/01/26 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭旭志
研究生(外文):Shi-Tsu Cheng
論文名稱:利用實數型基因演算法合成布雷格光柵頻譜之應變分佈
論文名稱(外文):Strain Profile Synthesis of Fiber Bragg Gratings Spectrum by the Real-Coded Genetic Algorithm
指導教授:黃振發黃振發引用關係羅裕龍
指導教授(外文):Jen-Fa HuangYu-Lung Lo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:57
中文關鍵詞:功率鑑別濾波器布雷格光柵基因演算法增益平坦濾波器
外文關鍵詞:Power Discriminator FilterGenetic AlgorithmFiber Bragg GratingsGain flatten filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:375
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:2
布雷格光纖光柵在最近的十幾年中快速地發展,其最主要的功能是做為光的濾波器。因為布雷格光纖光柵具有低損耗、不受電磁干擾、成本低廉等優點,所以在目前已經被大量應用在光纖通訊及光纖感測等方面。
在這篇論文中提出利用已知的布雷格光柵頻譜來合成布雷格光柵的應變分布。這個方法是結合布雷格光柵的轉換矩陣分析模式和實數型基因演算法而成。合成的程序是將布雷格光柵的週期對應應變分佈的關係加入到實數型基因演算中。同時我們把應變對布雷格光柵造成折射率變化的因素也適當的與以考慮。在此篇論文中我們合成了數個布雷格光柵濾波器的例子,包含了帶通濾波器,功率鑑別器,以及摻鉺光纖放大器的增益平坦濾波器。由這些例子我們可以看出利用實數型基因演算法合成布雷格光柵濾波器的方法可以得到令人滿意的結果。
With the significant discovery of photosensitivity in optical fibers, a new class of in-fiber component has been developed, called the fiber Bragg grating (FBG). The fiber Bragg gratings have many advantages, such as low loss transmission, immunity to electromagnetic interference, easy fabrication, make the intro-core grating an ideal candidate for use in telecommunications and sensory field.
A method of extracting the strain profile along a fiber Bragg grating for the known reflection spectrum is described. By combining the T-matrix analysis method for calculating the reflection spectrum together with a real-coded genetic algorithm, we obtain a promising method for the spectrum synthesis. The synthesis procedure is based on a real-coded genetic algorithm that relates to the non-uniform grating pitch associated with the loading strain field. The strain-optic effect in an optical fiber, therefore, is considered. Several examples of the synthesis strain profile in fiber Bragg gratings for the band-pass, power discriminator filters, and EDFA gain flatten filter are presented. Including the design variables in length of grating and difference in refractive indices, the accuracy of the matching spectrum could be improved.
Contents

1. Introduction……………………………………………………………..1
1.1 Applications of FBG in Optical Communication…………………………………….1
1.2 Applications of FBG in Optical Sensors……………………………………………..2
1.3 The Inverse Problem In Fiber Bragg Grating………………………………………...3
1.4 The Genetic algorithm and FBG Filters Synthesis…………………………………...4
2. Fiber Bragg Grating Theory and Genetic Algorithm……………………..7
2.1 Fundamental Theory of FBG………………………………………………………...7
2.2 Method for FBG Fabrication………………………………………………………..11
2.3 The property of FBG………………………………………………………………..14
2.3.1 Chirped fiber Bragg grating……………………………………………………15
2.3.2 Gauss-Apodised fiber Bragg grating…………………………………………..17
2.3.3 Phase Shift fiber Bragg grating………………………………………………...18
2.4 Genetic Algorithm Preliminaries and Processes……………………………………19
3. Implementation of FBG Synthesis with Real-coded Genetic
Algorithm…………………………………………….……….…………..24
3.1 Transfer matrix method……………………………………………………………..24
3.2 The effect of different strain in Fiber Bragg Grating……………………………….26
3.3 The Real-coded Genetic Algorithm.………………………………………………..29
3.4 Analysis model……………………………………………………………………..30
4. Numerical Simulation on Strain Profiles Synthesis of FBG Filters……35
4.1 Initial conditions…………………………………………………………………….35
4.2 Numerical Examples………………………………………………………………..36
4.2.1 Band-pass Filter(Δn0 and L are fixed)………………………………………36
4.2.2 Power Discriminator Filter(Δn0 and L are fixed)……………………………38
4.2.3 Power Discriminator Filter(Δn0 and L are variables)……………………….40
4.2.4 EDFA Gain flatten Filter(Δn0 and L are variables)………………………….41
4.3 Simple Experiments and Discussion………………………………………………..45
5. Conclusions……………………………………………………………..49

References
References:
[1]R. J. Campbell and R. Kashyap, “The properties and applications of photosensitive germanosilicate fiber,” Int. J. Optoelectron, vol. 9, pp. 33-57, 1994.
[2]T. Erdogan, “Fiber Grating Spectra,” Journal of Lightwave Technology, vol. 15, pp. 1277-1294.
[3]A. Othonos, and Kyriacos Kalli, Fiber Bragg Gratings, Academic Press, 1999.
[4]G. A. Ball, W. W. Morey, “Efficient integrated Nd3+ fiber laser,” IEEE Photonics Technology Letters, Vol.3, pp.1077-1078,1991
[5]G. A. Ball and W. H. Glenn, “Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors,” Journal of Lightwave Technology, Vol.10, pp.1338-1343, 1992
[6]Temmyo. J., Sugo. M., Nishiya. T., Tamamura. T.; Bilodeau. F., Hill. K. O, “Improved coupling efficiency of a strained InGaAs-AlGaAs quantum-well laser into a fiber Bragg grating,” IEEE Photonics Technology Letters, Vol.95, pp.581-583, 1997
[7]Kersey, A. D. , et al. “Fiber grating sensors,” IEEE Journal of Lightwave Technology, vol. 15, 1997, pp. 1442-1463.
[8]S. Huang, M. M. Ohn, and R. M. Measures, Phase-based Bragg intra-grating distributed strain sensor, Appl. Opt. 35 (1996) 1135-1143.
[9]M. Leblanc, S. Y. Huang, M. Ohn, R. M. Measures, A. Guemes, and A. Othonos, Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis, Opt. Lett. 21 (1996) 1405-1407.
[10]M. Volanthen, H. Geiger, M. J. Cole, and J. P. Dakin, Measurement of arbitrary strain profiles within fiber gratings, Electron. Lett. 32 (1996) 1028-1029.
[11]M. M. Ohn, S. Y. Huang, R. M. Measures, and J. Chwang, Arbitrary strain profile measurement within fibre gratings using interferometric Fourier transform technique, Electron. Lett. 33 (1997) 1242-1243.
[12]J. Skaar and K. M. Risvik, A genetic algorithm for the inverse problem in synthesis of fiber grating, Journal of Lightwave Technology, 16 (1998) 1928-1932.
[13]G. Cormier, R. Boudreau, and S. Theriault, Real-code genetic algorithm for Bragg grating parameter synthesis, J. Opt. Soc. Am. B. 18 (2001) 1771-1776.
[14]K. W. Yang, A. G. Liu, C. C. Cheng, and Y. L. Lo, Topology and shape optimizations of substrates using for chirp fiber bragg grating spectrum tuning, Revised for Journal of Lightwave Technology, 2002.
[15]Hill, K. O., et al. “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters, vol. 62, 1993, pp. 1035-1037.
[16]Anderson, D. Z., et al. “Production of in fiber gratings using a diffractive optical element,” Electronics Letters, vol. 29, 1993, pp. 566-568.
[17]B. Malo, K. O. Hill, F. Bilodaeu, D. C. Johnson, and J. Albert, “Point by point fabrication of Micro-Bragg gratings in photosensitive fiber using single excimer pulse refractive index modification techniques,: Electron Letter., vol. 29, pp1668-1669, 1993.
[18]U. Eriksson, P. Blixt, and J. A. Tellefsen, Jr., “Design of fiber gratings for total dispersion compensation.” Optical Letter, vol. 19, pp. 1028-
[19]A. Asseh, H. Storoy, Bengt E. Sahlgren, S. Sandgren, and Raoul A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” Journal of Lightwave Technology, vol. 15, pp.1419-1423, 1997.
[20]Byron K. C., Sugden K., Bircheno T., and Bennion I., “Fabrication of chirped Bragg gratings in photosensitive fiber,” Electron Letter, vol. 29, pp. 1659-1660.
[21]Eggleton B., Krug P. A., and Poladin L., “Dispersion compensation by using Bragg grating filters with self induced chirp,” in Tech. Digest of Opt. Fib. Comm. Conf., OFC’94, pp. 227.
[22]Farries M. C., Sugden K., Ried D. C. J., Bennion I., Molony A., and Goodwin M. J., “Very broad reflection bandwidth (44 nm) chirped fiber gratings and narrow bandpass filters produced by the use of an amplitude mask,” Electron Letter, vol. 30, pp. 891-892.
[23]Ouellette F., “The effect of profile noise on the spectral response of fiber gratings,” in Bragg gratings, Photosensitivity, and Poling in Glass Dibers and Waveguides: Applications and Fundamentals, vol. 17, OSA Technical Digest Series, pp. 222-224.
[24]Hill K. O., Bilodeau F., Malo B., Kitagawa T., Theriault, Johnson D. C., and Albert J., “Aperiodic in fiber gratings for optical fiber dispersion compensation,” in Technical Digest of Post-Deadline Papers, OFC’94.
[25]Stephens T., Krug P. A., Brodzeli Z., Doshi G., Ouellette F., and Poladin L., “257 km transmission at 10GB/s in non dispersion shifted fiber using an unchirped fiber Bragg grating dispersion compensator,” Electron Letter, vol. 32, pp. 1559-1561, 1996.
[26]Kashyap R., McKee P. F., Campbell R. J., and Williams D. L., “A novel method of writing photo-induced chirped Bragg gratings in optical fibers,” Electron Letter vol. 12, pp. 996-997, 1994.
[27]Okude S., Sakai T., Wada A., and Yamauchi R., “Novel chirped fiber grating utilizing a thermally diffused taper-core fiber,” in Proc. of OFC’96, paper TuO7, pp. 68-69.
[28]Putnam M. A., Williams G. M., and Friebele E. J., “ Fabrication of tapered, strain –gradient chirped fiber Bragg gratings,” Electron Letter vol. 31, pp. 309-310, 1995.
[29]H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. vol. 55, pp. 109-126, 1975.
[30]M. Matsuhara and K. O. Hill, “Optical-waveguide band rejection filters: design,” Applied Opt., vol. 13, pp. 2886-2888, 1974.
[31]Zhang, L., et al. “Post fabrication exposure of gap type bandpass filters in broadly chirped fiber gratings,” Optics Letters, vol. 20, pp. 1927-1929, 1995.
[32]J. H. Holland, Adaption in Natural and Artificial Systems. Cambridge, MA: The M.I.T. Press, 1975.
[33]Davis, L. Handbook of genetic algorithms. Van Nostrad Reinhold.
[34]Beasley D., D. R. Bull, R. R. Martin, An overview of genetic algorithm: part 1: fundamentals. University Computing, 1993.
[35]Cobb H. G., An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. NRL Memorandum Report 6760, 1990.
[36]M. Yamada and K. Sakuda, Analysis of almost-periodic distributed feedback slab waveguide via a fundamental matrix approach, Appl. Opt. 26 (1987) 3474-3478.
[37]S. Y. Huang, M. LeBlsnc, M. M. Ohn, and R. M. Measures, Bragg intra-grating structural sensing, Appl. Opt. 34 (1995) 5003-5009.
[38]M. LeBlanc, S. Huang and R. M. Measures, “Fiber optic intra-grating strain gradient sensing,” SPIE, pp. 136-147.
[39]Lucasius C. B. and Kateman G.., Applications of genetic algorithms in chemometircs. Proc. of the Third International Conference on Genetic algorithms. pp. 170-176,1989.
[40]Davis L. Adapting Operator Probabilities in Genetic Algorithms, Proc. of the Third International Conference on Genetic algorithms. pp.61-69, 1989.
[41]Wright A. Genetic Algorithms of real parameter Optimization. Foundations of Genetic Algorithms 1, G. J. E. Rawlin (Ed), pp. 205-218, 1991.
[42]C. D. Butter and G. B. Hocker, “Fiber optics strain gauge”, Appl. Opt. 17 pp. 2867-2869, 1978
[43]Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs, New York: Springer-Verlag, 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top